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Abstract

Referring video object segmentation (R-VOS) aims to
segment objects of interest in video, referred to by linguis-
tic expressions. In this report, we present our solution for
the 5th Large-scale Video Object Segmentation Challenge,
built upon SgMg [19]. Unlike previous R-VOS techniques
that follow a decode-and-segment paradigm, SgMg adopts
an efficient segment-and-refine paradigm to address the fea-
ture drift issue and achieve top-ranked performance. With-
out bells and whistles, e.g., joint training and test-time aug-
mentations, our solution achieves 60.0 J&F on the test
split of Ref-YouTube-VOS and ranked 3rd place in Track
3 (Referring Video Object Segmentation) of the 5th Large-
scale Video Object Segmentation Challenge. Moreover, we
outperform existing state-of-the-art competitors in a fair
comparison. Code is available at https://github.com/bo-
miao/SgMg.

1. Introduction

Referring video object segmentation (R-VOS) is an
emerging video task that aims to segment target objects
in video, referred to by linguistic expressions. It bene-
fits a wide range of applications such as video surveil-
lance. Unlike semi-supervised video object segmenta-
tion [28, 3, 17, 18], which benefit from provided ground
truth for the first frame, R-VOS is more challenging due to
the requirement for cross-modal understanding.

Recent R-VOS techniques employ attention-based trans-
formers to capture long-range dependencies and handle
multimodal features, achieving promising performance.
Based on the diverse object queries, conditional kernel [22]
is then introduced [1, 25] to dynamically identify target ob-
jects within videos. These methods follow a decode-and-
segment paradigm, where kernels are extracted from en-
coded features to segment decoded features. Despite their
promising performance, this paradigm suffers from feature
drift issues which hampers the effectiveness of the kernels.

In this report, we present our solution for the R-VOS
challenge, which is entirely based on SgMg [19]. SgMg em-
ploys the conditional kernel to directly segment its fully per-
ceived encoded features to generate mask priors, preventing
the feature drift and its adverse effects. The priors are then
refined using visual details to generate fine-grained masks.
We conduct experiments on Ref-YouTube-VOS to validate
the effectiveness of SgMg. Even without using joint train-
ing and test-time augmentations, SgMg achieves 60.0 J&F
on the Ref-YouTube-VOS test split, and ranked 3rd place in
Track 3 (Referring Video Object Segmentation) of the 5th
Large-scale Video Object Segmentation Challenge.

2. Related Works

Referring Video Object Segmentation. Current methods
utilize multimodal interactions to equip visual features with
correlated linguistic information for R-VOS. [21] proposes
a unified R-VOS framework that conducts iterative segmen-
tation using linguistic and temporal features. [10] estab-
lishes object relations and tracklets for sequence-level seg-
mentation. [26, 5] perform hierarchical cross-modal fusion
to improve feature representations. [12, 9] conducts pro-
gressive segmentation that perceives object candidates and
then finds the optimal match.

With the advance of transformers [23], MTTR [1] intro-
duces an end-to-end network with conditional kernels [22]
for dynamic segmentation and achieves impressive perfor-
mance. ReferFormer [25] further proposes language-guided
conditional kernels, which are object-specific, to boost per-
formance. However, the decode-and-segment paradigm
within their methods leads to feature drift issues, making the
network sub-optimal. SgMg [19] proposes a segment-and-
optimize paradigm to address the drift problem, achieving
state-of-the-art performance with efficient inference time.
In this challenge, we employ SgMg to evaluate the test split
of Ref-YouTube-VOS.

https://github.com/bo-miao/SgMg
https://github.com/bo-miao/SgMg
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Figure 1. The overall framework of SgMg, simplified from [19]. Given a video sequence and a language description, the cross-modal
fusion enhances visual features using linguistic information. Language-guided queries associate vision-language features to generate
segmentation kernels and predict mask priors. The optimization recovers visual details for the priors and generates fine-grained results.

3. Method
This section presents the SgMg approach [19], includ-

ing the cross-modal fusion and the segment-and-optimize
paradigm. The overall framework is shown in Fig. 1. In
this report, we adopt VideoSwin [14] and RoBERTa [13] as
visual and text encoders respectively. More details can be
found in [19].

3.1. Cross-modal Fusion
SgMg [19] includes a spectrum-guided cross-modal fu-

sion to improve multimodal representations. The module
conducts spectrum augmentation with adaptive Gaussian
smoothed filters to enhance features before and after cross-
attention between visual and textual representations. Given
the input feature map F, spectrum augmentation (SA) is
computed as:

SA(F,K) = F+ΦIFFT(Proj(σ(K,F)⊙ ΦFFT(F))) (1)

where ⊙ denotes low-pass filtering through adaptive Gaus-
sian smoothed filters σ(K,F), a 2D Gaussian map gener-
ated based on the bandwidth K and scaled by a parameter
predicted from F. The point-wise spectral operations in SA
promote global interactions and thus enhance feature repre-
sentations. In summary, the spectrum-guided cross-modal
fusion can be represented as:

Fusion(Fw,Fv) = SA(SA(Fv)⊗Att(SA(Fv),Fw)) (2)

where Fv and Fw are visual and textual features.

3.2. Segment-and-Optimize Paradigm

The segment-and-optimize paradigm proposed by
SgMg [19] conditionally segments encoded features to pre-
dict (patch) mask priors and performs multi-granularity op-
timization to recover visual details.

For conditional segmentation, language-guided object
queries Q interact with vision-language features Fvl to pre-
dict kernels,

Kernel(Q,Fvl) = Φ(Proj(Att(Q,Fvl))) (3)

where Φ represents the parameterization operation to gen-
erate two point-wise convolutions. The kernels convolve on
Fvl to predict mask priors.

For multi-granularity optimization, SgMg reuses vi-
sual features with spatial strides of {4,8} to predict residual
maps of mask priors, progressively recovering visual details
to efficiently generate fine-grained masks.

3.3. Sequential Matching and Loss Functions

We perform instance matching with five language-
guided object queries. Each query predicts a bounding box
B, a score S indicating mask quality, and conditional ker-
nels generating mask priors MP . The Hungarian algo-
rithm [6] is adopted to find the best result (query), and the
multi-granularity optimizer refines the optimal MP to pro-
duce full-resolution mask M.

To supervise the model, we use Dice loss [8] and Focal
loss [11] for masks, Focal loss [11] for scores, and L1 and
GIoU [20] loss for bounding boxes:

Ltrain = λm(LMP + LM) + λbLB + λsLS (4)

where L and λ are the loss term and weight.

4. Implementation Details
Following [25, 19], we first pre-train our model on Re-

fCOCO/+/g [16, 27] and then fine-tune it on the training
set of Ref-YouTube-VOS [21]. The model is trained using



Team Overall J F

Robertluo 70.0 68.0 72.0
beter 66.0 64.0 68.0
Ours 60.0 59.0 62.0
MahouShoujo 60.0 58.0 61.0

Table 1. The leaderboard of the R-VOS challenge.

AdamW [15] optimizer for 12 epochs in pre-training and
6 epochs in main training. During pre-training, we set the
initial learning rates of 2.5e-6, 1.25e-5, and 2.5e-5 for the
text encoder, visual encoder, and the rest components, re-
spectively. The pre-training uses a single frame, with the
learning rates decayed by a factor of 10 at the 8th and 10th
epochs. In the main training, we freeze the text encoder,
and the initial learning rates of 2.5e-5 and 5e-5 are adopted
for the visual encoder and the rest. The learning rates are
divided by 10 at the 3rd and 5th epochs.

The model is trained on 2 RTX 3090 GPUs with 5 ran-
domly selected frames per clip, all resized to the longest
side of 640 pixels. The coefficients for different loss terms
λdice, λfocal, λL1, λgiou are set to 5, 2, 5, and 2. The data
augmentation comprises random resize, random crop, ran-
dom horizontal flip, and photometric distortion.

5. The 5th Large-scale Video Object Segmen-
tation Challenge

Our result ranked 3rd in the 5th YouTube-RVOS Chal-
lenge, without using techniques like joint training or test-
time augmentations. As shown in Table 1, we achieved an
overall accuracy of 60.0 on the Ref-YouTube-VOS 2023 test
set. For a fair comparison with previous benchmarks, we
conducted the evaluation under identical settings on the val-
idation split of Ref-YouTube-VOS. As shown in Table 2, we
achieved 58.9 J&F , outperforming the nearest competitor
by 2.9% points.

6. Conclusion
We employed the efficient SgMg [19] for the R-VOS

challenge. SgMg follows a segment-and-optimize paradigm
to address feature drift issues exist in prior methods, while
its spectrum-guided cross-modal fusion enhances multi-
modal feature representations. Without bells and whistles,
Our solution ranked 3rd in Track 3 (Referring Video Ob-
ject Segmentation) of the 5th Large-scale Video Object Seg-
mentation Challenge and remarkably outperforms previous
benchmarks on the validation split of Ref-YouTube-VOS.
We hope SgMg will serve as a solid baseline for R-VOS
and benefit other approaches encountering the drift issue.
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Method Ref-YouTube-VOS

J&F J F

URVOS [21] 47.2 45.3 49.2
CMPC-V [12] 47.5 45.6 49.3
PMINet [5] 53.0 51.5 54.5
YOFO [7] 48.6 47.5 49.7
LBDT [4] 49.4 48.2 50.6
MLRL [24] 49.7 48.4 51.0
MTTR [1] 55.3 54.0 56.6
MANet [2] 55.6 54.8 56.5
ReferFormer [25] 56.0 54.8 57.3
Ours 58.9 57.7 60.0

Table 2. Comparison to state-of-the-art methods on the validation
split of Ref-YouTube-VOS, excerpted from [19].
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