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Abstract

Video object segmentation (VOS) has made significant
progress with the rise of deep learning. However, there
still exist some thorny problems, for example, similar ob-
jects are easily confused and tiny objects are difficult to be
found. To solve these problems and further improve the per-
formance of VOS, we propose a simple yet effective solu-
tion for this task. In the solution, we first analyze the dis-
tribution of the Youtube-VOS dataset and supplement the
dataset by introducing public static and video segmenta-
tion datasets. Then, we improve three network architectures
with different characteristics and train several networks to
learn the different characteristics of objects in videos. After
that, we use a simple way to integrate all results to ensure
that different models complement each other. Finally, sub-
tle post-processing is carried out to ensure accurate video
object segmentation with precise boundaries. Extensive ex-
periments on Youtube-VOS dataset show that the proposed
solution achieves the state-of-the-art performance with an
86.1% overall score on the YouTube-VOS 2022 test set,
which is 5th place on the video object segmentation track
of the Youtube-VOS Challenge 2022.

1. Introduction
Video object segmentation (VOS) [17, 23, 14, 26],

as a dense prediction task, aims at segmenting par-
ticular object instances across one video. Based on
VOS, Semi-supervised video object segmentation (Semi-
supervised VOS) targets segmenting particular object in-
stances throughout the entire video sequence given only the
object mask in the first frame, which is very challenging and
has attracted lots of attention. Recently, Semi-supervised
VOS has made good progress and been widely applied to
autonomous driving, video editing and other fields. In this

* Equal contribution.

Figure 1. Challenges in video object segmentation. (a) Similar
object are confused. (b) Tiny objects are difficult to detect. (c)
Great differences in semantics and scenes bring great challenges.

paper, we focus on improving the performance of the Semi-
supervised VOS (referred to as VOS for convenience be-
low).

In recent years, many VOS datasets have emerged,
among which DAVIS[17] and Youtube-VOS [23] are the
two most widely adopted. DAVIS 2017 is a multi-object
benchmark containing 120 videos with dense annotation.
Compared with DAVIS, Youtube-VOS is the latest large-
scale benchmark for multi-object video object segmentation
and is much bigger (about 40 times) than DAVIS 2017. In
Youtube-VOS, camera jitter, background clutter, occlusion
and other complicated situations are kept in the process of
data collection and annotation, in order to restore the real
scene and solve these complicated situations by means of
algorithms. To address challenges in VOS, lots of learning-
based methods have been proposed in recent years, achiev-
ing impressive performance. However, there still exist sev-
eral challenges that hinder the development of VOS. First
of all, there are many similar objects in the real applica-
tion scenarios of VOS (as shown in Figure 1 (a)), where the
accurate cross-frame tracking of these objects is very con-
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Figure 2. Overview of the proposed solution.

fusing, which leads to the different objects being wrongly
matched as the same one. Secondly, tiny objects are dif-
ficult to detect, especially in the process of moving across
frames and the size of objects fluctuates greatly (as depicted
in Figure 1 (b)), which makes it difficult for the algorithm
to accurately detect and track these objects. In addition,
many scenarios are very different, containing different ob-
jects and behaviors (as displayed in Figure 1 (c)), which
lead to many scenes and semantics not being included in
the training dataset, thus bringing great challenges to the
generalization of the algorithm. Actually, the above points
are prominent problems, and there are many other difficul-
ties to be solved in the task of VOS, which together make
VOS still a challenging task.

To deal with unresolved difficulties in VOS, many
methods made great efforts. Space-Time Memory
network(STM)[14] introduces memory networks to learn
relevant information from all available sources. In STM,
the past frames with object masks form an external mem-
ory, and the current frame as the query is segmented using
the mask information in the memory. Specifically, the query
and the memory are densely matched in the feature space,
covering all the space-time pixel locations in a feed-forward
fashion. By this way, it is verified that STM is able to han-
dle the challenges such as appearance changes and occlu-
sions effectively. In addition, Space-Time Correspondence
Network (STCN) [3] uses direct image-to-image correspon-
dence for efficiency and more robust similarity measures
in matching process, which greatly improves the efficiency
and performance of STM. Recently, An associating objects
with transformers algorithm (AOT) [25] is proposed to deal
with the challenging multi-object scenarios. In detail, AOT
employs an identification mechanism to associate multiple
targets into the same high-dimensional embedding space,
thus simultaneously processing multiple objects’ matching

and segmentation decoding as efficiently as processing a
single object. Within these methods, they can track and seg-
ment most specified objects across one video, but similar
objects, tiny objects and objects in complex scenes are still
difficult to track and segment.

Inspired by these existing methods, we propose a sim-
ple yet effective solution for VOS, as shown in Figure 2. In
order to deal with existing difficulties, we first analyze the
Youtube-VOS dataset and other video segmentation related
datasets (e.g., OVIS[18] and VSPW[12]). We find that other
datasets can supplement the diversified scenes with similar
objects and occlusion situation from the data aspect. And
in the model aspect, we choose three different basic net-
works (i.e., AOT[28], STCN[3] and FAMNet[24](An im-
proved STM[14])), which have different structures and can
learn the information of objects from different aspects, so
as to achieve complementary promotion. Next, a simple fu-
sion method is used to integrate different predictions from
several variants based on the above three basics. Finally, a
series of exquisite post-processing strategies are introduced
to improve the prediction results and ensure accurate video
object segmentation with precise boundaries. Extensive ex-
periments on the Youtube-VOS dataset show that the pro-
posed solution achieves state-of-the-art performance.

The main contributions of this paper include: 1) We an-
alyze the characteristics of the Youtube-VOS dataset, and
supplement the dataset with static and video segmentation
datasets. 2) We improve three basic network architectures
and train several variants to learn the different aspects of in-
formation for objects in videos. 3) We introduce a series of
subtle fusion and post-processing strategies to ensure accu-
rate video object segmentation with precise boundaries. 4)
The proposed solution achieves the state-of-the-art perfor-
mance with an 86.1% overall score on the YouTube-VOS
2022 test set, which is the 5th on the video object segmen-
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tation track of the Youtube-VOS Challenge 2022.

2. Method

To address difficulties in VOS, we propose a simple yet
effective solution, as shown in Figure 2. Details of the pro-
posed solution are described as follows.

2.1. Data Matters

Learning-based VOS methods are highly dependent on
data. Although YouTube-VOS is the largest video object
segmentation dataset, it is still unable to utilize the potential
of the current state-of-the-art methods sufficiently.

Through the analysis of the Youtube-VOS dataset, we
find that there are four key points to pay attention to at the
data level, which are summarized as semantics, occlusions,
diversity and time-sequence. Most state-of-the-art methods
in the VOS task adopt a two-stage training strategy. In the
first stage, video clips synthesized from the static images are
used for pre-training. Then the real video data is used for
final training in the second stage. Large-scale static image
datasets come from fields like instance segmentation and
salient object detection, and therefore have more semantics
and diversity. By pre-training on them, the VOS model can
extract robust feature embedding for pixel-level spatiotem-
poral feature matching, and improve the ability to identify
and discriminate against diverse targets. We try to introduce
ImageNet-Pixel[29], a more diverse image dataset in the
pre-training stage, but it does not bring obvious benefits. We
believe that this is because the current model structure and
separated two-stage training method cannot fully utilize the
information in the static image datasets. On the other hand,
video data in the real world have additional temporal infor-
mation compared to static image data, and the data form in
the testing stage is video, so it is more straightforward to
bring more video segmentation datasets to improve perfor-
mance. Benefit from the release of several new datasets in
the video segmentation field recently, such as YoutubeVIS
which has more objects in each video, OVIS [18] which
occlusion scenarios are significant, and VSPW [12]) which
have dense annotations and high-quality resolution, we in-
troduce them into the second training stage, thus signifi-
cantly improving the performance of models.

After the above data supplement, the ability of the model
in the aspect of semantics extraction, occlusions recognition
and other aspects has been enhanced.

2.2. Strong Baseline Models

We adopt three kinds of architectures as our baseline
models including AOT[28], FAMNet[24], and STCN[3],
which have high performance in the VOS field recently. The
detailed implementation can be found in their original pa-
pers.

Benefit from an effective identification mechanism and
long short-term transformer module, AOT can achieve high
performance for both seen and unseen objects in the test
phase. Meanwhile, FAMNet and STCN can produce better
results for unseen objects because of the simplicity and ro-
bustness of their core pixel-wise feature matching module.
By combining methods with different network designs, we
can get several sets of results at different aspects of infor-
mation for video objects and obtain more gains in the model
ensemble stage.

2.3. Nontrivial Attempts

LSTT block V2: Although the network structure of the
AOT[28] is delicate, it still has room for improvement. Fol-
lowing AOST[25], we improve Long Short-Term Trans-
former (LSTT) block, the core module in AOT model, and
obtain the LSTT block V2 which has better performance.
Specifically, LSTT block utilize the attention mechanism
to perform pixel-level feature matching between the cur-
rent frame and memory frames. The formulas of com-
mon attention-based matching mechanism, attention-based
matching mechanism of the LSTT block and attention-
based matching mechanism of the LSTT block V2 are,

Att(Q,K, V ) = Corr(Q,K)V

= softmax(
QKtr

√
C

)V
, (1)

Att(Q,K, V + E), (2)

Att(Q,K ⊙ σ(WG
l E), V +W ID

l E). (3)

By combining the target identification embedding E with
the value embedding of the memory frames V in Eq. 1, AOT
can propagate the information of multiple targets to the cur-
rent frame simultaneously (Eq. 2). Compared with the
original LSTT block, the LSTT block V2 is more effective.
There are two main differences between them. The first one
is in the value part of the attention mechanism. LSTT block
V2 projects E by a linear layer Wl whose weights are var-
ious in different LSTT layers. Such modification increases
the degree of freedom of the model. The second one is in
the key part of the attention mechanism. LSTT block V2
generates a single channel map to adjust the key embedding
of the memory frames K using E so that the target informa-
tion of memory frames can be used in the matching process
between Q and K too.
Turning off strong augmentation: In order to further im-
prove the performance of our models, a trick frequently
used in the object detection field is performed. Specifically,
we turn off data augmentation operations other than random
cropping for the last few epochs when running the second
stage of training. Meanwhile, we only use YouTube-VOS
as our training data. In this way, the data distribution in the
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final training stage is more consistent with the data distribu-
tion in the testing stage.
Attaching top-k filtering to memory read: The long-term
memory bank in AOT is similar to the memory bank in
STM-like methods. So the number of memory frames used
in the training stage and testing stage is inconsistent. Be-
sides, as the video’s length increases in the testing stage, the
size of long-term memory bank also grows dynamically. So
we attempt to add top-k filtering operation[2] to the Long-
Term Attention module in AOT, to alleviate the problem
of information redundancy and remove noises in long-term
memory. But this attempt doesn’t always work in all of our
models.
Model ensemble: Considering that the performance of dif-
ferent models is diverse, we adopt offline ensembling to
fuse these models’ predictions for getting higher precision
frame by frame. Specifically, we have tried two fusion
methods. First, we average predictions of all models di-
rectly, to help the models complement each other and re-
duce error prediction. The second interesting idea is key-
point voting, we use feature matching[5][15] to correlate
the target in the previous frames and current frame, so as to
judge the quality of the prediction of different models in the
current frame and weight them by keypoint voting, which
reduces some wrong predictions.
Patch-level boundary refinement and tracking-based
small object refinement: In addition to the above at-
tempts, we use some post-processing strategies to refine
the predicted results. We adopt boundary patch refinement
(BPR)[21] to improve the boundary quality of object seg-
mentation. BPR is a conceptually simple yet effective post-
processing refinement framework. After that our predic-
tions have significant improvements near object boundaries,
as shown in Figure 2. Besides, the input of most exist-
ing state-of-the-art methods is the whole video frame, and
the resolution of the feature map in the pixel-level feature
matching process is further reduced because of the down-
sampling operation. Both of them cause poor results for
small objects. Therefore, we adopt the crop-then-zoom
strategy in FAMNet. Firstly, we integrated box-level ob-
ject position information provided by the tracker[1] and the
preliminary segmentation result of the object provided by
the VOS model to get the approximate positions of partial
small objects within the dataset in every frame. Then the
original frames are cropped and resized to a larger size. Fi-
nally, a secondary segmentation is performed on the clip to
obtain more accurate segmentation results for small objects.

3. Experiments

3.1. Training Details

To comprehensively improve the accuracy, four differ-
ent frameworks, including AOT[28], improved AOT[25],

STCN[3], and FAMNet[24] are used in our experi-
ments. For AOT, multiple networks such as Swin[10],
EfficientNet[20], and ResNext[22] are used as the encoder
to obtain better accuracy. Noted that the parameters of BN
layers and the first two blocks in the encoder are frozen in
view of stabilizing the training. Following the official set-
tings of AOT, we also take a two-stage training strategy.
In the pre-training stage, several static image datasets in-
cluding COCO[9], ECSSD[19], MSRA10K[4], PASCAL-
S[7], PASCAL-VOC[6] are used for preliminarily semantic
learning. During the main training, video datasets includ-
ing Youtube-VOS[23], DAVIS 2017[17], YouTubeVIS[8],
OVIS[18], and VSPW[12] are used to enhance the general-
ization and robustness of the model.

During the training of AOT, images are cropped into
patches with the fixed size of 465 × 465, and multiple im-
age and video augmentations are randomly applied follow-
ing [13, 27] to enrich the diversity of data. The experiments
are performed on Pytorch by using 4 Tesla A100 GPUs. We
minimize the sum of bootstrapped cross-entropy loss and
soft Jaccard loss by adopting AdamW[11] optimizer. In the
pre-training, the initial learning rate is set to 4e-4 with a
weight decay of 0.03 for 100,000 steps, and the batch size
is set to 32 for acceleration. In the main training, with the
initial learning rate of 2e-4, weight decay of 0.07, and batch
size of 16, the training step is extended to 130,000 due to
the expansion of data. Noted that all learning rates will de-
cay to 2e-5 by using a polynomial manner as [27]. To en-
sure the stability of training and enhance the robustness of
the model, we also adopt the Exponential Moving Average
(EMA)[16] to average the parameters of the model for bet-
ter performance. For the training of STCN and FAMNet, all
training process follows their official implementations.

3.2. Inference and Evaluation

For evaluating the single model of AOT, to reduce the
sensitivity of the model to various object scales, online
flip and multi-scale testing is applied to obtain better ac-
curacy. Specifically, the predictions generated from videos
with three scales of 1.2 × 480p resolution, 1.3 × 480p res-
olution, and 1.4 × 480p resolution are ensembled frame by
frame during the inference. In addition, to balance the num-
ber of objects that appear in the quite long or quite short
video sequence, a dynamic memory frame sampling strat-
egy is introduced in our experiments. For STCN and FAM-
Net, we also apply the flip and multi-scale testing in our
experiments.

Considering that models with different structures have
unique predictive advantages, we adopt an offline model
ensemble strategy to further improve the performance of re-
sults. Specifically, soft prediction scores produced by mod-
els which have different frameworks and different backbone
networks are simply averaged as the final result. Noted that
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Figure 3. Representative visual examples from the baseline model and the proposed solution.

Team Name Overall Jseen Junseen Fseen Funseen

Thursday Group 0.872(1) 0.855(1) 0.817(3) 0.914(1) 0.903(1)
ux 0.867(2) 0.844(3) 0.819(1) 0.903(2) 0.903(2)

zjmagicworld 0.862(3) 0.841(4) 0.816(4) 0.895(4) 0.896(4)
whc 0.862(4) 0.840(5) 0.818(2) 0.894(5) 0.896(5)
gogo 0.861(5) 0.847(2) 0.808(7) 0.901(3) 0.890(6)

sz 0.857(6) 0.831(6) 0.815(5) 0.886(7) 0.896(3)
PinxueGuo 0.856(7) 0.832(7) 0.812(6) 0.887(6) 0.892(7)

Table 1. Ranking results in the YouTube-VOS 2022 test set. We mark our results in blue.

we also have tried other strategies like max weighting and
key-point voting, and the average operation gains the best
performance. All the results are evaluated on the official
YouTube-VOS evaluation servers.

3.3. Results

Through test-time augmentation, model ensemble and
post-processing strategies, the proposed solution obtain the
5th place on the YouTube-VOS 2022 testset, as listed in Ta-
ble 1. From the result, we see that our solution surpasses
most solutions in the seen category (as shown in Jseen and
Fseen), which is a characteristic of our solution. In addition,
we also show some of our quantitative results in Figure 3.
It can be seen that the proposed solution can accurately seg-
ment objects in some difficult scenarios which have severe
changes in object appearance, confusion of multiple similar
objects and small objects.

In order to demonstrate the effectiveness of differ-
ent components, we conduct several ablation experiments.
Quantitative results are shown in Table 2. We boost the

performance of the original AOT network to 86.6% on
YouTube-VOS 2019 validation set without any test-time
augmentation such as multi-scale testing or flip testing.

Components Overall
AOTL-R50(baseline) 85.3

+ Swinb backbone 85.5
+ LSTT Block v2 85.7

+ More real video data 86.2
+ Turn off strong augmentation 86.6

Table 2. Ablation study on YouTube-VOS 2019 validation set.

4. Conclusion
In this paper, we propose a solution for the video object

segmentation task, and make nontrivial improvements and
attempts in many stages such as data, model, ensemble, and
post-processing strategies. In the end, we achieve the 5th
place on the YouTube-VOS 2022 Video Object Segmenta-
tion Challenge with an overall score of 86.1%.
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