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Abstract

For semi-supervised video object segmentation task, As-
sociating Objects with Transformers (AOT) [21, 23] has
been proven to be outstanding under multiple object seg-
mentation scenarios. Based on AOT, this paper investigates
the more powerful architecture and the more efficient trans-
former block. A novel pyramid architecture (PAOT) is de-
signed to fully utilize the multi-scale features. With the ar-
chitecture, higher performance is achieved by deeper trans-
formers associating objects on multiple scales. While the
architecture brings better performance, the computing bur-
den increases vastly. In order to control the computational
cost and realize better efficiency, an efficient version of the
long short-term transformer (ELSTT) is proposed. The head
reduction strategy and dilated attention mechanism in the
ELSTT not only reduce the computational time but also cut
down the demand for the memory space. Therefore, the
pyramid architecture and the efficient LSTT enable PAOT
to be superior both in performance and efficiency. After
applying test-time augmentations and model ensemble, we
rank 2nd in Track 1 (Video Object Segmentation) of the 4th
Large-Scale Video Object Segmentation Challenge.

1. Introduction

Video object segmentation (VOS) is a fundamental task
in computer vision. There are several different settings for
video object segmentation. In this paper, we mainly focus
on semi-supervised video object segmentation. In this task,
target objects are specified by one or more reference frames
with pixel-level masks in a video. Semi-supervised video
object segmentation aims to segment all target objects in all
frames in the video.

Semi-supervised video object segmentation has been
deeply explored in recent few years, especially via learning-
based techniques. A straightforward idea is to match pix-
els between frames to acquire information about target ob-
jects. FEELVOS [17] uses the global and local match-
ing between pixel-wise embeddings to transfer information
through frames. CFBI(+) [20,22] considers the background
matching equally as the foreground matching, and thus a

foreground-background integration approach is proposed.

To tackle the problems in VOS, the similarity of the ob-
jects in both the spatial and temporal spaces should be fully
utilized. As a milestone, STM [13] introduces the mem-
ory networks to video object segmentation and models the
matching as space-time memory reading. Based on the
space-time memory reading framework, some of the later
works design better memory reading or matching methods.
KMN [14] proposes the kernelized memory network, which
adds the kernel constraint on the memory reading to meet
the local assumption. LCM [7] learns position consistency
in global memory matching and introduces target consis-
tency in local memory matching, which makes the segmen-
tation more robust and reliable.

AOT [21, 23] introduces the transformer structure to
VOS and develops a quite different framework from STM.
Unlike previous methods which segment multiple objects
one by one and merge results by post ensemble, AOT pro-
cesses all the target objects simultaneously with its multi-
object identification mechanism. To model multi-object as-
sociation, a long short-term transformer (LSTT) is designed
for constructing memory matching and mask propagation.
AOTv2 [19] improves the identification-based attention in
the LSTT block by coupling identification and vision em-
beddings in different embedding spaces for different layers.

The fact that the scale of an object in a video usually
changes over time is a common challenge in VOS. Despite
the effective designs in the AOT model, only the feature
maps on the smallest scale are fed into the LSTT module,
which follows the common way to obtain the frame embed-
ddings in other frameworks. We argue that using single-
scale feature maps for matching in some cases is not suffi-
cient enough to achieve robust and reliable results. In ad-
dition, the architecture of AOT can result in performance
saturation. Increasing the number of LSTT layers from one
to two or three in the AOT gains performance boost. How-
ever, further increase in LSTT layers contributes little to
the performance. To tackle these problems, we propose a
novel pyramid architecture to associate objects with trans-
formers (PAOT), which sequentially merges feature maps
on multiple scales to form the feature pyramid and finishes
matching and propagation in a progressive manner. Com-
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(a) The architecture of AOT.
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(b) The architecture of PAOT.

Figure 1. The above two pictures compare the architectures of AOT and PAOT. The main difference is that the LSTT module is combined
with the decoder to form a pyramid architecture in the PAOT.

pared with AOT, PAOT organizes richer encoded features
for matching, and also breaks through the limit of AOT
as it enables deeper transformer layers. Therefore, PAOT
achieves higher performance and better robustness.

Although the architecture brings higher performance, the
computational cost increases vastly since the large scale fea-
ture maps are involved in. To reduce the computational cost,
we propose the efficient long short-term transformer (EL-
STT). In the ELSTT, the number of heads in the long-term
attention is reduced. In addition, the dilated attention mech-
anism is employed to ease the huge memory consumption
caused by the attention between large size keys and values.
Finally, the pyramid architecture is combined with the EL-
STT to complete the PAOT model, which has both high per-
formance and efficiency.

2. Method
In this section, the main method we use is elaborated on.

First, we shortly revisit the AOT model to prepare the reader
for the following content. Next, the architecture design of
our pyramid AOT model is introduced. Last but not least,
we present the details of the efficient long short-term trans-
former in PAOT.

2.1. Revisit AOT

To make the model capable of handling multiple objects
at the same time, an identification mechanism is proposed
in the AOT. First, identification embedding is used to embed
the masks of multiple different targets into the same feature
space for propagation. Assuming N targets are in the video
scenery, an identity bank which contains M(M > N) iden-
tification vectors is used to assign identities to different ob-
jects randomly. After the identity assignment, each different
target has a different identification embedding, and thus the
model can propagate all the target identification information

from memory frames to the current frame by attaching the
identification embedding to the visual features.

The Long short-term transformer (LSTT) is one of the
core modules in the AOT. Following the common trans-
former blocks [2, 16], the LSTT firstly employs a self-
attention layer, which is responsible for learning the asso-
ciation or correlation among the targets within the current
frame. Then, the LSTT additionally introduces a long-term
attention for aggregating targets’ information from long-
term memory frames and a short-term attention for learning
temporal smoothness from nearby short-term frames. The
final module is a common 2-layer feed-forward MLP with
GELU [6] non-linearity in between. The multi-object in-
formation will be gradually aggregated and associated as
the LSTT structure goes deeper, leading to more accurate
attention-based matching. More analysis can be found in
[21].

2.2. Pyramid AOT

2.2.1 Architecture

The whole architecture of PAOT as shown in Figure 1b fol-
lows the encoder-decoder design like many classical seg-
mentation networks, U-Net for example. In the encoder
part, it is divided into several blocks. After each block, the
feature maps of the input are down-sampled to smaller sizes.
As a result, the outputs of these encoder blocks can provide
features on different scales.

In the decoder part, unlike the FPN module [8] in the
AOT as shown in Figure 1a, the LSTT is combined with
several decoder blocks to form the pyramid stages of PAOT.
The feature maps on each scale from the encoder are fed
into the corresponding stage. The ELSTT module in the
stage is responsible for performing matching between cur-
rent frame and memory frames and aggregating mask in-
formation from memory frames. Next, the decoder blocks
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are able to decode the information. Such a stage repeats
for several times on different scales. Such a design has two
advantages. First, it fully utilizes the feature maps on differ-
ent scales. The FPN module in the AOT also takes feature
maps on different scales as its inputs. However, they just
function as shortcut connections to form the residual struc-
ture. Only the feature maps on the smallest scale are fed
into the LSTT module and perform matching across mem-
ory frames. The pyramid architecture enables feature maps
on multiple scales to be involved in matching. Second, it
deepens the whole model and the model capacity also ex-
tends along with the depth. In the AOT, increasing the
number of LSTT layers from one to two or three gains per-
formance boosts. However, further increase in LSTT lay-
ers contributes little to the performance. While in PAOT,
each stage includes several LSTT blocks and the informa-
tion aggregated by the previous stage can be accumulated
and reused in the current stage. As a result, the number
of LSTT layers increases from three to five and the model
continues to gain performance improvement.

2.2.2 Efficient Long Short-Term Transformer

The basic structure of the LSTT is introduced in 2.1. Di-
rectly using this design in the pyramid structure causes two
problems. First, the increase in the number of transformer
layers leads to the increase in the amount of calculation.
Second, the use of large scale feature maps in attention
causes great demand for the memory space. Taking these
problems into account, we design a more efficient structure
for the long short-term transformer (ELSTT).

After thorough analysis of the computational cost of
each part in the LSTT, we find the long-term attention dom-
inates. The long-term attention calculates the correlation
between current frame and memory frames. It needs longer
time and larger memory space to finish the matrix multi-
plication between the query of current frame and the key of
memory frames as the number of memory frames increases.
In order to cut down the computational cost, we reduce the
head number in the long-term attention. The long-term at-
tention in the AOT is a multi-head attention with 8 heads.
We reduce the number of heads from 8 to 4 or even 1. Ow-
ing to the head reduction, the whole model speeds up twice
and thus more LSTT layers can be afforded in the same run-
ning time.

However, the attention module with fewer heads still
needs a large amount of memory to compute if the sizes
of the key and the value are large. In the ELSTT, we ap-
ply dilated attention to save the memory space. In detail,
we dilate the key and the value before computing the self
attention and long-term attention for large scales:

Ks = s(K), Vs = s(V )

h = Softmax(
QKT

s

dh
)Vs.

Ks is the down-sampled version of the original key, and Vs

is the down-sampled version of the original value. s(·) is
the down-sampling function. The actual attention performs
among Q, Ks and Vs instead of Q, K and V . After down-
sampling, the width and height of the key and the value both
become half. The dilated attention not only saves lots of
memory space but also accelerates calculation.

3. Experiments
In this section, we introduce the settings of the experi-

ments and exhibit our results.

3.1. Training

In PAOT, the backbones for the encoder are chosen in
ResNet-50 [5] and Swin Transformer-Base [10]. While
ResNet-50 is more lightweight than Swin Transformer-
Base, the later achieves higher performance. As for the
decoder, the PAOT model includes ELSTT modules in mul-
tiple stages. In practice, we choose the number of the layers
in the ELSTT in three stages 16×, 16×, 8× to be 3,1,1 re-
spectively. Note that we do not use the 4× scale feature
maps in terms of the computational resource, and instead
we duplicate the 16× scale feature maps twice to form the
feature pyramid.

The training stage is divided into two phases: (1) pre-
training on the synthetic video sequences generated by
static image datasets [1, 3, 4, 9, 15] by randomly applying
multiple image augmentations [12]. (2) main training on
the real video sequences by randomly applying video aug-
mentations [20].

The training set includes two parts. The first is YouTube-
VOS [18] training set. It contains 3471 videos with 65 cat-
egories. To reinforce the capability of generalization of the
model, the VIPSeg dataset [11] is also incorporated into the
training set. VIPSeg contains 3536 videos with 58 thing
classes and their frames are annotated in a panoptic man-
ner. We convert the annotations into the suitable format for
video object segmentation for training.

During the PAOT training, we use 4 Tesla A100 GPUs,
and the batch size is 16. For pre-training, we use an ini-
tial learning rate of 4 × 10−4 for 100,000 steps. For main
training, the initial learning rate is set to 2 × 10−4, and the
training steps are 100,000. The learning rate gradually de-
cays to 1× 10−5 in a polynomial manner [20].

3.2. Evaluation

We evaluate our model on YouTube-VOS [18] validation
set which contains 474/507 videos in the 2018/2019 version
with additional 26 unseen categories. The unseen categories
do not exist in the training set in order to evaluate the gen-
eralization ability of algorithms.
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Method J&F J seen F seen J unseen F unseen

SwinB-AOTv2L [19] 85.2 84.2 88.9 79.8 88.0
SwinB-PAOT 85.9 85.3 89.9 80.4 88.0
+VIPSeg [11] 86.2 84.7 89.5 81.2 89.2
+Full Frames 87.1 85.7 90.5 82.2 90.1

+MS Flip 87.4 86.1 90.9 82.5 90.3
+Ensemble 87.9 86.6 91.5 82.8 90.6

Table 1. Ablation study on YouTube-VOS 2019 validation set. The
PAOT model uses Swin Transformer-Base as the backbone and 4-
head ELSTT.

When evaluating, all the videos are restricted to be not
bigger than 1.3× 480p resolution [20–22]. As for test-time
augmentations, both multi-scale test and flip test are used.
The scales are {1.2×, 1.3×, 1.4×} and each scale includes
non-flipped and flipped test. If the full frame version of the
videos are provided, the model can run on 5 FPS videos
instead of 1 FPS ones for better performance. Since denser
frames offer more detailed spatial motion clues, it is easier
for the model to propagate the masks.

The evaluation metric is the J score, calculated as the
average Intersect over Union (IoU) score between the pre-
diction and the ground truth mask, and the F score, calcu-
lated as an average boundary similarity measure between
the boundary of the prediction and the ground truth, and
their mean value, denoted as J&F as the overall metric.
We evaluate all the results on official evaluation servers.

3.3. Results

In the Track 1 (Video Object Segmentation) of 4th
Large-Scale Video Object Segmentation Competition, we
rank 2nd place on the test set. The leaderboard is shown in
Table 2.

We conduct experiments in the way of ablation study to
demonstrate the effectiveness of the methods we use. The
results are shown in Table 1. We set AOTv2L [19] as the
baseline and the backbone is Swin Transformer-Base [10].
It is trained on the YouTube-VOS training set only. When
the architecture is replaced with PAOT, the performance
increases from 85.2 to 85.9. With VIPSeg added to the
training set, the overall performance reaches 86.2. Evalu-
ating with full frames boosts the performance to 87.1. The
multi-scale and flipped test-time augmentations bring 0.3
increase. Five models are used for the ensemble to obtain
the final result. All models are PAOT and one of them has
a ResNet-50 backbone with 8-head ELSTT and all other 4
models have Swin Transformer-Base backbones. For the 4
models with Swin Transformer-Base backbone, two of them
have 1-head ELSTT and the other two have 4-head ELSTT.
The difference between the two 1-head models is that one
loads ImageNet classification pre-trained backbone and the
other loads ImageNet object detection pre-trained backbone
for the pre-training stage, as well as the two 4-head models.

Team Name J&F J seen J unseen F seen F unseen Ranking
Thursday Group 0.872 (1) 0.855 (1) 0.817 (3) 0.914 (1) 0.903 (1) 1
ux (ours) 0.867 (2) 0.844 (3) 0.819 (1) 0.903 (2) 0.903 (2) 2
zjmagicworld 0.862 (3) 0.841 (4) 0.816 (4) 0.895 (4) 0.896 (4) 3
whc 0.862 (4) 0.840 (5) 0.818 (2) 0.894 (5) 0.896 (5) 4
gogo 0.861 (5) 0.847 (2) 0.808 (7) 0.901 (3) 0.890 (6) 5
sz 0.857 (6) 0.831 (6) 0.815 (5) 0.886 (7) 0.896 (3) 6

Table 2. The leaderboard for the Track 1 (Video Object Segmenta-
tion) of 4th Large-Scale Video Object Segmentation Competition.
We rank 2nd place in the competition.
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