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Abstract

Semi-supervised video object segmentation is a chal-
lenging task in computer vision. It aims to segment some
particular instances in the video given the ground truth ob-
jects’ masks of the first frame. Space-time memory net-
work(STM) has a great influence on VOS. It makes full use
of the features of past frames through a memory network,
which significantly improves the accuracy. However, some
problems remain to be resolved. Its non-local matching
mechanism makes it easy to match multiple wrong objects
that have similar appearances. So we propose the SKN
network, which can improve the feature matching accu-
racy by using a spatial-constrain kernelized memory reader.
Spatial-constrain prior is generated according to the last
mask estimations. This prior can improve the features’ spa-
tial continuity and ensure that the most similar point of fea-
tures only appears in the right object’s region. Then a gaus-
sian kernel is used to suppress the response of features that
are far away from the most similar point. Besides, adver-
sarial training strategy is used to improve the robustness of
SKN. Finally, the proposed method achieves the J&F mean
score of 83.6% on the third YouTube-VOS competition.

1. Introduction

Video object segmentation (VOS) is one of the most
challenging tasks in computer vision. It has been widely
used in many fields, including autonomous driving, video
editing, video composition, etc. In the semi-supervised
VOS task, the ground truth mask of the first frame is pro-
vided. The algorithms are desired to predict all the masks of
the subsequent frames in a video. This task is challenging
because the appearance, position, and size of the objects can
vary greatly in the video. Besides, objects in the video may
have similar appearances, which may make the algorithms
find the wrong object.

Figure 1. Illustration of the SKN. The right object is the left tor-
toise in the image. For STM, the memory reader module will find
multiple tortoises that have similar appearances. So multiple tor-
toises will be detected finally. For the kernelized memory reader
module of KMN, it will find the most similar point in the feature
map, then use a gaussian kernel to suppress the response of feature
map that is far away from the point. However, the appearances of
tortoises are so similar that the most similar feature point appears
in the region of other tortoises. For our spatial-constrain kernel-
ized memory reader, the most similar point will be found in the
right tortoise’s region according to the previous mask.

Space-time memory networks(STM)[1] have achieved
great success in VOS. It uses a memory network to store the
features of past frames. Then space-time attention mecha-
nism is used to match pixel-level features of memory with
those of the query frame. This approach takes full advan-
tage of the prior information of previous masks, so it has a
good ability to handle occlusion and fast motion. However,
many problems still remain to be resolved. Although the
non-local matching mechanism of STM can make good use
of the features of the previous frames, it often occurs that
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Figure 2. Overall architecture of spatial-constrain kernelized memory network (SKN). The overall structure is similar to the STM network.
We added a spatial-constrain kernel generated by the previous mask. Then a kernelized memory reader is used to suppress the response of
regions far from this point in the feature map.

the right object matches multiple wrong objects, especially
when they have similar appearances.

KMN[2] network proposed a kernelized memory reader.
This kind of memory reader uses a gaussian kernel to sup-
press responses of similar objects’ features and prevent the
algorithm from finding multiple similar targets.

Nevertheless, KMN also faces the problem of spatial
discontinuity. When different objects have similar appear-
ances, the most similar point may appear in the wrong ob-
jects’ regions, resulting in matching errors. To solve this
problem, we propose the spatial-constrain kernelized mem-
ory reader. On the basis of KMN, we add the spatial-
constrain prior. Specifically, we use the previous mask esti-
mation as the prior of spatial position. Mask’s center point
is taken to generate a spatial gaussian kernel, which can be
used to suppress the features’ response which is far away
from the previous objects’ region. In this way, the feature
map keeps the spatial continuity. So the most similar point
in feature map will be always found in the right object’s
region to prevent the model from detecting wrong objects.

Generally, training videos are so short that VOS algo-
rithms are easily disturbed by errors in the inference pro-
cess. In order to improve the robustness of the network, we
introduce an adversarial training strategy. With this strategy,
SKN has less confidence in previously estimated results and
avoids the accumulation of errors.

Finally, the SKN network achieves the J&F mean score
of 77.8% for the Davis2017 test-dev dataset, 83.7% for the
Youtube-VOS val dataset and 83.6% on the third YouTube-
VOS competition.

2. Approch
2.1. Architecture

The memory reader of STM uses the feature matching
mechanism of query-to-memory. Since there isn’t any spa-
tial constraint, it is easy to get many similar features from
memory frames. KMN adds the memory-to-query match-
ing mechanism to ensure that only the most similar objects
are selected. However, since spatial continuity of features
is not taken into account, the most similar object is likely
to be wrong when objects have similar appearances. SKN
further adds the mask-to-memory mechanism, introducing
spatial continuity of the most similar objects. The overall
structure of SKN is shown in Figure 2.

2.2. Memory reader with spatial-constrained kernel

For STM, previous images and corresponding masks
are encoded to get the features: KM ∈ RT×H× W×C/8

and VM ∈ RT×H×W×C/2. The former stores address-
ing information and generates the matching scores of mem-
ory frames. The latter stores detailed information for cur-
rent mask estimation. H,W,C are height, width and chan-
nel of the feature map respectively, while T is the num-
ber of frames in the memory network. After that, the cur-
rent image is encoded to generate two features: KQ ∈
RH× W×C/8, V Q ∈ RH×W×C/2. The correlation maps
can be generated as c ∈ RTHW×HW from KM ,KQ

c = KM
(
KQ

)T
(1)

Then, The weight matrix of V Q can be obtained after a
softmax layer:

Wi,j =
exp (ci,j)∑
i exp (ci,j)

(2)
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Figure 3. The memory reader of the SKN

where i,j are the location of a pixel in the feature map.
The final output F ∈ RH×W×C of memory reader is then
obtained:

F =
[
V Q,WTVM

]
(3)

[·, ·] denotes the concatenation.
In SKN network, spatial-constrain kernel St−1 was

firstly obtained according to the last binary mask estima-
tion Mt−1 ∈ RH×W . To be specific, we first take the set of
non-zero points’ positions of Mt−1 as: Pt−1 ∈ RN×2. N is
the number of non-zero points in Mt−1. Take the position
of the center point as:

r = (rx, ry) = Median (Pt−1) ∈ R1×2 (4)

Then take the standard deviation of the distances be-
tween all the points of Pt−1 and r:

σs =

√∑
p∈Nt−1

(px − rx)2 + (py − ry)2

N
(5)

A spatial-constrain gaussian kernel SCK ∈ RH×W can
be obtained according to r, σs :

SCKi,j = exp

(
− (i− rx)2 + (j − ry)2

2σ2
s

)
(6)

After that, SCK is used to filterW to enhance the spatial
continuity of features

W1 =W � SCK (7)

� means the element-wise multiplication. Then, the
maximum point of W1 is taken as the most similar point:

m = argmax (W1) , (8)

Figure 4. Adversarial training process

A gaussian kernel g ∈ RH×W is generated with this
point as the center.

gi,j = exp

(
− (i−mx)

2
+ (j −my)

2

2σ2
g

)
(9)

σg means the standard deviation of g. This kernel will
be used to suppress the region’s response which is far from
the most similar point:

W2 =W � g (10)

Finally, the output of memory reader will be obtained:

F =
[
V Q,WT

2 V
M
]

(11)

F will be used as the input of the decoder to get the
current mask estimation. The whole structure of spatial-
constrain kernelized memory reader is shown in Fig4.

It can be seen that the memory reader of SKN firstly gen-
erates a spatial-constrain gaussian kernel based on the pre-
vious mask. It is used as spatial prior to enhance the spatial
continuity of features. Then use the maximum point of cor-
relatraion map as the most similar point. Because of the spa-
tial continuity of features, the most similar point is always
located in the right object’s region, even though many ob-
jects have similar appearance. Then another gaussian kernel
g is generated using the most similar point as its center. This
gaussian kernel will suppress the region’s response which is
far away from the most similar point.

3. Adversarial training
As the previous mask estimation is strongly correlated

with the current mask, models often have excessive confi-
dence in it, which may lead to the accumulation and amplifi-
cation of errors. Besides, because of the limitation of GPU’s
memory, researchers typically use some very short videos
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Method Davis17 test-dev Youtube val
Baseline(Resnest101) 72.7 80.2
+ASPP 73.4(+0.7) 81.1(+0.9)
+Adversarial training 75.8(+2.4) 82.0(+0.9)
+Spatial Kernel 76.9(+1.1) 82.7(+0.7)
+Flip and Multi-scale 77.8(+0.9) 83.7(+1.0)

Table 1. Ablation study on Davis17 test-dev and Youtube-VOS val
dataset

to train their models, which may prevent models from iden-
tifying errors in time. To solve this problem, we propose
the adversarial training strategy. Different from the general
training strategy, we apply various random noises to the pre-
vious mask estimation to simulate the errors in the inference
process. Specifically, for the videos containing multiple ob-
jects, we randomly select a square region of two objects
and swap them. For the videos containing a single object,
the foreground and background of two random rectangu-
lar regions are swapped. Besides, the mask estimations are
randomly dilated or eroded to simulate the errors of edges
in the inference process.

Applying these noises in the training stage has two ad-
vantages: First, It reduces the dependence of the model on
the previous prediction results and forces the query encoder
to learn more robust features from the query frame; Second,
It can adapt the model to various errors that may occur in
the inference process, which can prevent the accumulation
of errors and improve the robustness of the model. This
training strategy is shown in Fig4.

4. Implementation details

To improve the accuracy, we used Resnest101[3] as the
backbone network of the encoder. In addition, the ASPP[4]
module is added to improve the receptive field of the model
like [5]. The ablation study in Youtube-VOS val dataset is
shown in Table1.

4.1. Training

In order to train the model fully, our training strategy can
be divided into three stages. In the first stage, coco[6] and
other static instance segmentation datasets are used for pre-
training. Every image and its corresponding mask are ran-
domly flipped and rotated to generate three images, which
can be seen as a short video. In the second stage, we use
the BL30K dataset for training. This dataset is a super
large synthetic dataset proposed by MiVOS[7]. In the third
stage, the joint dataset of YouTubeVos[8], Davis16[9] and
Davis17[10] is used for the final training. We resize the
shortest edge of the image to 480, and crop a 380 × 380
patch from the image as the input. Adversarial training
strategy is only used in the third stage.

4.2. Inference

To improve the final accuracy, we apply the flip and
multi-scale testing. Finally, our SKN network achieves
the J&F mean score of 77.8% for the Davis2017 test-dev
dataset, 83.7% for the Youtube-VOS val dataset and 83.6%
on the third YouTube-VOS competition.
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