Feature Aligned Memory Network for Video Object Segmentation

Wangwang Yang', Zhengyi Lv?, Jiangyu Liu?, and Di Huang'

'Beihang University
*Megvii Research

Abstract

In this paper, we propose a Feature Aligned Memory
Network(FAMNet) for semi-supervised video object seg-
mentation. Unlike other variants of Space-Time Memory
Networks where two different encoders are used for query
frame and memory frame separately, our method only uses
one encoder for both query frame and memory frame, re-
garding VOS as a pixel-level matching task completely.
By sharing the encoder weights, we not only reduce the
amount of model parameters, but also make the extracted
features more aligned, which is conducive to subsequent
pixel-level matching. Besides, We designed a crop then
zoom strategy to improve the accuracy of small objects and
relieve the impact of accumulated errors caused by pre-
vious frames. Through additional multi-scale testing and
model ensemble, our FAMNet achieves the fifth place on the
YouTube-VOS 2021 Semi-supervised Video Object Segmen-
tation Challenge with a J&F mean score of 83.9%.

1. Introduction

Video Object Segmentation (VOS) is a fundamental task
in computer vision and has attracted more and more atten-
tion in the community. It can perform accurate pixel-level
segmentation for the objects in the video so that it has a wide
range of applications in video editing, video understanding,
automatic driving, etc. In this paper, we focus on semi-
supervised video object segmentation(Semi-VOS), which
targets at segmenting particular object instances throughout
the entire video sequence given only the object masks of the
first frame.

YouTube-VOS|[17] is a popular video object segmenta-
tion benchmark. Challenges like fast motion, occlusion,
large appearance variation, multiple similar objects dis-
turbing each other etc. appear in YouTube-VOS dataset
frequently. Compared with another popular benchmark
DAVIS[12], YouTube-VOS has some scenarios where only

part of the object appear in the first frame bringing addi-
tional difficulties and ambiguities for segmenting the object
in subsequent frames.

In recent years, most of the advanced Semi-VOS mod-
els can be regarded as matching-based methods. Some of
them[7][1S] only use the first frame as the template and
predict objects at each frame independently since the ob-
ject’s mask in the first frame come from the given reli-
able groundtruth. But these approaches have difficulties in
dealing with large appearance variation and complex mo-
tion which appear in the YouTube-VOS dataset frequently.
There are also some methods[11][6] only using the previ-
ous frame as the reference because of the great similarity
between the previous frame and the current frame, but they
suffer from occlusions and object out of view unfortunately.
[L4][18] use both the first frame and the previous frame
for global matching and local matching separately, combin-
ing the advantages of the above two types of methods. In
order to use more reference frames, Space-Time Memory
network(STM)[I10] establishes a memory bank and mem-
ory read mechanism so that the current query frame can
be matched with the first frame, the previous frame and
other intermediate frames at the pixel level. We develop
our method based on STM because of its simplicity and ef-
fectiveness.

In STM, there are some restrictions that affect the fur-
ther improvement of the performance, so we made several
improvements for better result. Firstly, STM encodes query
frame and memory frame with two disparate encoders sep-
arately, because memory frame’s input include RGB image
and corresponding mask while query frame only has RGB
image as input. In fact, the two encoders have basically the
same network structure(such as ResNet50 network) except
for the number of input channels. The implement of this
two separate encoders not only brings redundant model pa-
rameters which is inefficient, but also makes the features of
query frame and memory frame inconsistent that adding ex-
tra difficulties to the subsequent pixel-level matching stage.
To solve this problem, we make a simple modification to the



input of the two encoders, so that they can share the weights
and produce more aligned features for better memory read
operation. Secondly, STM uses feature map with a resolu-
tion 1/16 of original input size for pixel level feature match-
ing, which is very unfriendly to small objects. In addition,
STM only considers the pixel level feature matching with-
out considering the object level information, thus losing the
object-centric information. Therefore, confusion will oc-
cur while facing the scene of multiple similar objects, and
sometimes there will also be some extra error segmentation
caused by accumulated errors in the background area. We
introduce an additional tracker as an aid and design a crop
then zoom strategy to alleviate the above problems. Thirdly,
original STM neglect the spatial relationship between pixels
in the query frame so we employ an Atrous Spatial Pyramid
Pooling (ASPP) module[2] before the network’s decoder to
capture more multi-scale context information.

2. Method

2.1. Aligning Features through Weight Shared En-
coder

Our method uses a weight shared encoder for both query
frame and memory frame like a siamese network structure.
In order to solve the problem of mismatch between the two
encoder inputs, we make a simple modification to the input
of the encoder. For memory frame, we concatenate the RGB
image with its corresponding foreground object’s mask to
form a 4-channel input. Here we are different from origi-
nal STM’s memory encoder which has a 5-channel input(3
channel for RGB image, 1 channel for current foreground
object’s mask and another 1 channel for the union of other
foreground objects’ masks). For query frame, we concate-
nate the RGB image with an all-one mask so the input of
query frame and memory frame become exactly the same
in form and they can share the single encoder to extract
the feature for pixel level matching. Through padding the
all-one mask for query image, the pixels in the foreground
area are easier to be matched. Besides, the feature space
mapped to the memory frame and query frame is exactly the
same, since only one encoder is used, which reduces the dif-
ficulty of model training. In our experimental observations,
after making such modifications to the encoder input, our
method can memory and match the foreground and back-
ground simultaneously which conducive to segmenting the
unseen texture area of the object due to large deformation
or moving from border. We show some typical examples in

Figure[T]
2.2. Crop then Zoom Strategy

Semi-VOS and visual object tracking(VOT) are concep-
tually similar. When the rectangle box in the VOT is re-
placed with a pixel-level mask, the two tasks are exactly the

Figure 1. Some typical examples produced by our weight shared
encoder model. The left column is the first frames with given
masks and the right column shows our robust segmentation re-
sults even though the object changes significantly or only partially
appears in the initial frame.

same in form. The main difference between Semi-VOS and
VOT is the application scenario. Semi-VOS task usually
consider larger objects, and attach great importance to the
non-rigid deformation of the objects, while VOT task usu-
ally consider smaller objects whose motion range is larger
and the scene is more challenging. Since VOT uses a rect-
angle box to represent the tracked object, it naturally has
object-level information which is what STM network lacks.
Therefore, we combined the output of a tracker(we use an
advanced transformer-based tracker[3]] proposed recently)
and the output of the VOS model to design a crop then zoom
strategy to further improve the performance of the model,
especially in scenes with small objects and accumulated er-
rors. The pipeline is depicted in Figure 2] Specifically, we
first use the tracker to track the object, and then crop the
area where the object is located, and then resize the patch
to a fixed larger resolution. After that we send it to the
original VOS pipeline. Finally, the segmentation result will
be remapped back to the original image. Note that we did
not use the crop then zoom strategy for all objects in the
dataset. We apply this strategy to objects whose size is al-
ways smaller than 200x200. Since the result of the tracker is
not always completely correct, and it is necessary to judge
whether the object is always smaller than the preset size, we
first use the VOS model to perform preliminary segmenta-
tion of the video objects, and then combine the output result
of the tracker to select the suitable objects to apply the crop
then zoom strategy. Figure[3] includes some examples to
prove the effectiveness of this strategy.

2.3. More Local Context Information

It is impossible to obtain accurate segmentation results
only by matching pixel-level features. The original STM
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Figure 3. Several visualization comparisons about our crop then
zoom strategy. The left column is the initial segmentation results
with the tracker’s output. The right column shows our fine-grained
segmentation results. Best viewed with zoom-in.

network uses a decoder with skip connections to obtain final
segmentation results. In order to further increase the recep-
tive field and capture multi-scale local context information,
we add an ASPP module[2] before the decoder.

3. Experiments
3.1. Training Details

We follow the training settings in STM[[10] which using
a two-stage training strategy. We use several saliency and
semantic segmentation datasets including MSRA10K[4],
ECSSD[13]], PASCAL VOC[3], COCO[9] as pre-training
data, and YouTube-VOS 2019 training set as main-training
data.

During pre-training, we use static images to synthesis
virtual video sequence because of the lack of training data.
In our experiments, we did find that pre-training is very

Skip Connection

useful. 384x384 patches are randomly cropped from static
images and data augmentation like random scale, random
affine transform, random horizontal flip, color jitter are ap-
plied to simulate the change of objects in the video. Dur-
ing main-training, we crop 384x640 patches from YouTube-
VOS dataset following[[19]. In order to reduce low-quality
samples caused by random crop, we only apply random
crop near the foreground area. For each video, we randomly
sample three temporally-ordered frames with a maximum
interval 25 and reverse the sequence with a probability of
50%.

We set the minibatch size to 6 per GPU for pre-training
and 3 per GPU for main-training and disabled all the batch
normalization layers in backbone as[[10]. We minimize the
cross-entropy loss and Lovész-Softmax loss([1]] using Adam
optimizer[8]] with a initial learning rate of le-5. StepLR
learning rate schedule is applied to make the model con-
verge stably. All training are finished using four NVIDIA
GeForce RTX 2080Ti GPUs.

To alleviate the shortcomings of the Adam optimizer that
is easy to converge to the sub-optimal solution, we switch
the Adam optimizer to SGD following[[16] and fine-tune the
model for another 50 epochs with a learning rate of le-4
after the main-training.

3.2. Testing Details

We adopt flip and multi-scale testing to segment objects
that vary in scales. We also use model ensemble to further
improve the performance of our model. Specifically, we use
two backbone networks ResNet50 and ResNeXt50 whose
performances are similar in our pipeline. For each model,
we use two different memory frame sampling strategies for
predicting because some objects appear in very few frames
in YouTube-VOS. The probabilities of the four prediction
were simply averaged as the final result. As shown in Ta-
ble 2] our method achieves the fifth place on the Challenge.



3.3. Ablation Study

We study the contribution of all the components and
tricks in our method. The quantitative results are shown
in Table [l We boost the performance of STM network to
85.3% on YouTube-VOS 2019 validation set finally.

Components Overall
Baseline(Re-implementation STM) 80.6
+ ASPP Module 81.1
+ Weight Shared Encoder 83.0
+ Multi-scale & Flip Testing 83.7
+ Switch Adam to SGD Training 84.0
+ Crop then Zoom Strategy 84.7
+ Model Ensemble 85.3

Table 1. Ablation study on YouTube-VOS 2019 validation set.

4. Conclusion

In this paper, we propose a Feature Aligned Memory
Network(FAMNet) that improved some problems in orig-
inal STM network, making the performance of the STM
network reach a new level. In the end, our method achieves
the fifth place on the YouTube-VOS 2021 Semi-supervised
Video Object Segmentation Challenge with an overall score
of 83.9%.

Team Name Overall Jseen Junseen | Fseen Funseen
wenhaowang 0.856(1) | 0.836(2) | 0.811(2) | 0.888(1) | 0.889(2)
hkchengrex 0.854(2) | 0.828(3) | 0.814(1) | 0.883(3) | 0.893(1)
testing-gg 0.854(3) | 0.836(1) | 0.806(3) | 0.888(2) | 0.885(3)
ginghualiuyong | 0.842(4) | 0.816(5) | 0.799(4) | 0.870(5) | 0.881(4)

cneyww 0.839(5) | 0.823(4) | 0.788(7) | 0.874(4) | 0.871(6)
cheng321284 | 0.836(6) | 0.809(8) | 0.798(5) | 0.859(8) | 0.877(5)
PixelKitty 0.835(7) | 0.814(6) | 0.793(6) | 0.866(6) | 0.868(7)
dandan66 0.821(8) | 0.811(7) | 0.765(10)| 0.864(7) | 0.845(10)
JerryX 0.818(9) | 0.795(9) | 0.780(8) | 0.845(9) | 0.853(8)
BeyondID 0.810(10)| 0.784(11)| 0.770(9) | 0.835(11)| 0.849(9)

niceL 0.806(11)| 0.786(10)| 0.763(11)| 0.836(10)| 0.837(11)

Table 2. Ranking results in the YouTube-VOS 2021 test set. We
mark our results in blue.
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