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Abstract

This paper investigates how to realize better and more
efficient embedding learning to tackle the semi-supervised
video object segmentation under challenging multi-object
scenarios. Although one of the state-of-the-art VOS meth-
ods, CFBI, has achieved promising performance by inte-
grating foreground-background information, each positive
object is decoded individually under multi-object scenar-
ios. To associate all video objects, we propose an Asso-
ciating Objects with Transformers (AOT) [25] approach
to match and decode multiple objects uniformly. In de-
tail, AOT employs an identification mechanism to associate
multiple targets into the same high-dimensional embedding
space. Thus, we can simultaneously process the match-
ing and segmentation decoding of multiple objects as effi-
ciently as processing a single object. For sufficiently mod-
eling multi-object association, a Long Short-Term Trans-
former is designed for constructing hierarchical matching
and propagation. We conduct extensive experiments on
YouTube-VOS to examine AOT variant networks with dif-
ferent complexities. Compared to CFBI+ (82.8%, 4.0FPS),
our AOT-S (82.6%, 12.5FPS) achieves comparable accu-
racy and 3× speed on the validation 2018 split. Our larger
variant, AOT-L (83.7%, 6.3FPS), achieves superior per-
formance even using a light-weight backbone, MobileNet-
V2. After applying test-time augmentations and model en-
semble, we ranked 1st in Track 1 (Video Object Segmen-
tation) of the 3rd Large-scale Video Object Segmentation
Challenge. The code will be publicly available at https:
//github.com/z-x-yang/AOT.

1. Introduction

Thanks to the recent advance of deep neural net-
works, many deep learning based video object segmenta-

tion (VOS) algorithms have been proposed recently and
achieved promising performance. STM [15] and its fol-
lowing works [17, 14] leverage a memory network to store
and read the target features of predicted past frames and
apply a non-local attention mechanism to match the target
in the current frame. FEELVOS [20] and CFBI [24, 26]
utilize global and local matching mechanisms to match tar-
get pixels or patches from both the first and the previous
frames to the current frame. Particularly, CFBI proposed
to integrate both the foreground and background features
to learn contextual information and contrastive object em-
beddings. Such a simple foreground-background integra-
tion has shown promising improvement and indicates that
contextual information is important for effective embedding
learning.

Even though the above methods have achieved signif-
icant progress, the above methods learn to decode scene
features that contain a single positive object. Thus under
a multi-object scenario, they have to match each object in-
dependently and ensemble all the single-object predictions
into a multi-object segmentation, as shown in Fig. 1a. Such
a post-ensemble manner eases network architectures’ de-
sign since the networks are not required to adapt the pa-
rameters or structures for different object numbers. How-
ever, processing multiple objects separately yet in par-
allel requires multiple times the amount of GPU mem-
ory and computation for processing a single object. This
problem restricts the training and application of VOS un-
der multi-object scenarios, especially when computing re-
sources are limited. Besides, modeling multiple objects in-
dependently, instead of uniformly, is inefficient in explor-
ing multi-object contextual information, which should be
important to learn more robust feature embeddings, as mo-
tivated by the foreground-background integration.

To solve the above problems, Fig. 1c demonstrates a
feasible approach to associate and decode multiple objects
uniformly in an end-to-end framework. Hence, we pro-
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Figure 1: (a) Many VOS methods process multi-object scenarios in a post-ensemble manner. (b) CFBI [24, 26] introduced the
foreground-background integration by additionally matching the relative background for each object (dot lines). (c) Instead
of using post-ensemble, Our AOT [25] associates all the objects in a end-to-end network, leading to better efficiency and
embedding learning.

pose an Associating Objects with Transformers (AOT) [25]
approach to match and decode multiple targets uniformly.
First, an identification mechanism is proposed to assign
each target a unique identity and embed multiple targets
into the same feature space. Hence, the network can learn
the association or correlation among all the targets. More-
over, the multi-object segmentation can be directly decoded
by utilizing assigned identity information. Second, a Long
Short-Term Transformer (LSTT) is designed for construct-
ing hierarchical object matching and propagation. Each
LSTT block utilizes a long-term attention for matching with
the first frame’s embedding and a short-term attention for
matching with several nearby frames’ embeddings. Com-
pared to the methods [15, 17] utilizing only one attention
layer, we found hierarchical attention structures are more
effective in associating multiple objects.

We conduct extensive experiments on YouTube-
VOS [23] to validate the effectiveness and efficiency of
the proposed AOT. Even using the light-weight MobileNet-
V2 [16] as the backbone encoder, the AOT variant net-
works achieve superior performance on the validation 2018
& 2019 splits of the large-scale YouTube-VOS (ours, J&F
82.6∼83.7% & 82.2∼83.6%) while keeping faster multi-
object run-time (12.5∼6.3FPS) compared to the state-of-
the-art competitors (e.g., CFBI [24], 81.4% & 81.0%,
3.4FPS). Besides, our smallest variant, AOT-T, can main-
tain real-time multi-object speed on YouTube-VOS. After
applying common test-time augmentations (multi-scale and
flipping) and ensembling AOT-L [25] with CFBI+ [26], we
ranked 1st in the Track 1 (Video Object Segmentation) of
the 3rd Large-scale Video Object Segmentation Challenge.

2. Revisit Foreground-Background Integration
Benefit from deep networks, current state-of-the-art VOS

methods [15, 20] have achieved promising performance.
Nevertheless, these methods focus on matching and decod-
ing a single object. Under a multi-object scenario, they thus

have to match each object independently and ensemble all
the single-object predictions into a multi-object prediction,
as demonstrated in Fig. 1a. This manner extends networks
designed for single-object VOS into multi-object applica-
tions, so there is no need to adapt the network for different
object numbers.

Based on such a post-ensemble manner, CFBI [24, 26]
introduced the concept of foreground-background integra-
tion, i.e., additionally matching the relative background
for each object, as shown in Fig. 1b. Compared to
foreground-only matching, the foreground-background in-
tegration leverages more contextual information and thus
can relieve the background confusion problem [24], leading
to more accurate segmentation.

Although the above post-ensemble manner is prevalent
and straightforward in the VOS field, processing multiple
objects separately yet in parallel requires multiple times
the amount of GPU memory and computation for match-
ing a single object and decoding the segmentation. This
problem restricts the training and application of VOS under
multi-object scenarios when computing resources are lim-
ited. To make the multi-object training and inference as ef-
ficient as single-object ones, an expected solution should be
capable of associating and decoding multiple objects uni-
formly instead of individually (Fig. 1c). To achieve such
an objective, we propose the AOT framework to associate
and segment multiple objects uniformly within an end-to-
end framework, leading to better efficiency. Compared to
foreground-background integration, our training is more ef-
ficient since AOT can associate multiple object regions and
learn comprehensive contextual information directly.

3. Associating Objects with Transformers
This section introduces the AOT framework, including

our identification mechanism proposed for efficient multi-
object VOS and the long short-term transformer for con-
structing hierarchical multi-object matching and propaga-
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Figure 2: Illustrations of the long-term attention and the
short-term attention.

tion. More details can be found in [25].

3.1. Identification Mechanism

We propose an identification mechanism consisting of
identification embedding and decoding based on attention
mechanisms to associate multiple objects.

First, an Identification Embedding mechanism is pro-
posed to embed the masks of multiple different targets into
the same feature space for propagation. Assuming N tar-
gets are in the video scenery, we use an identity bank, which
contains M (M > N ) identification vectors, to assign iden-
tities to different objects randomly. After the identity as-
signment, each different target has a different identification
embedding, and thus we can propagate all the target iden-
tification information from memory frames to the current
frame by attaching the identification embedding to the vi-
sual features.

For Identification Decoding, i.e., predicting all the tar-
gets’ probabilities from the aggregated feature, we firstly
predict the probability logit for every identity in the bank
by employing a convolutional decoding network, and then
select the assigned ones and calculate the probabilities.

3.2. Long Short-Term Transformer

Recently, transformer blocks [19] have been demon-
strated to be stable and promising in constructing hierarchi-
cal attention structures in visual tasks [1, 6]. We carefully
design a Long Short-Term Transformer (LSTT) block for
multi-object VOS based on transformer blocks.

Following the common transformer blocks [19, 5], LSTT
firstly employs a self-attention layer, which is responsi-
ble for learning the association or correlation among the
targets within the current frame. Then, LSTT addition-
ally introduces a long-term attention (Fig. 2a), for aggre-
gating targets’ information from long-term memory frames
and a short-term attention (Fig. 2b), for learning tempo-
ral smoothness from nearby short-term frames. The fi-

nal module is a common 2-layer feed-forward MLP with
GELU [10] non-linearity in between.

The hierarchical matching and propagation of LSTT are
not simply a stack of multiple attention processes. The
multi-object information will be gradually aggregated and
associated as the LSTT structure goes deeper, leading to
more accurate attention-based matching. More analysis can
be found in [25].

4. Implementation Details

We follow the original setting of AOT [25] to build
AOT variants, including AOT-T, AOT-S, AOT-B, and AOT-
L. In the default setting, only a light-weight network,
MObileNet-V2 [16], is used as the backbone encoder.

All the training details are the same as the strategy used
in AOT [25], where the training stage is divided into two
phases: (1) pre-training on synthetic video sequence gen-
erated from static image datasets [7, 13, 4, 18, 8] by ran-
domly applying multiple image augmentations [22]. (2)
main training on the VOS benchmarks [23] by randomly
applying video augmentations [24].

We evaluate our AOT on YouTube-VOS [23], which
is the latest large-scale benchmark for multi-object video
segmentation. Specifically, YouTube-VOS contains 3471
videos in the training split with 65 categories and 474/507
videos in the validation 2018/2019 split with additional 26
unseen categories. The unseen categories do not exist in the
training split in order to evaluate the generalization ability
of algorithms.

When evaluating, all the videos are restricted to be not
bigger than 1.3 × 480p resolution [24, 26, 25]. When
using multi-scale test-time augmentation, the scales are
{0.75×, 1.0×, 1.25×, 1.5×}.

The evaluation metric is the J score, calculated as the
average Intersect over Union (IoU) score between the pre-
diction and the ground truth mask, and the F score, calcu-
lated as an average boundary similarity measure between
the boundary of the prediction and the ground truth, and
their mean value, denoted as J&F . We evaluate all the
results on official evaluation servers.

5. The 3rd YouTube-VOS Challenge

In this section, we introduce our solution on The 3rd
YouTube-VOS Challenge. We mainly adopt two frame-
works, AOT and CFBI+. AOT is a newly proposed
transformer-based method which is elaborated above. Apart
from AOT, we also enhance CFBI+ for further improve-
ment. With the strength of model ensembling, we finally
achieve the 1st rank on the test split of this challenge.
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Table 1: The quantitative evaluation of AOT [25] on
YouTube-VOS [23]. For sufficiently validating the effec-
tiveness, all the AOT models use light-weight MobileNet-
V2 [16] as the backbone encoder. MS : using a multi-scale
and flipping strategy during inference.

Seen Unseen

Method J&F J F J F FPS

Validation 2018 Split

STM [15] 79.4 79.7 84.2 72.8 80.9 -
KMN [17] 81.4 81.4 85.6 75.3 83.3 -
CFBI [24] 81.4 81.1 85.8 75.3 83.4 3.4
CFBI+ [26] 82.8 81.8 86.6 77.1 85.6 4.0
AOT-T 80.2 80.1 84.5 74.0 82.2 25.3
AOT-S 82.6 82.0 86.7 76.6 85.0 12.5
AOT-B 83.2 82.6 87.4 77.3 85.6 8.0
AOT-L 83.7 82.5 87.5 77.9 86.7 6.3

Validation 2019 Split

CFBI [24] 81.0 80.6 85.1 75.2 83.0 3.4
CFBI+ [26] 82.6 81.7 86.2 77.1 85.2 4.0
AOT-T 79.7 79.6 83.8 73.7 81.8 25.3
AOT-S 82.2 81.3 85.9 76.6 84.9 12.5
AOT-B 83.3 82.5 87.0 77.8 86.0 8.0
AOT-L 83.6 82.2 86.9 78.3 86.9 6.3
AOT-LMS 84.6 83.8 88.4 79.0 87.1 -

5.1. Compare AOT with SOTA methods

As shown in Table 1, AOT variants achieve superior
performance on YouTube-VOS compared to the previous
state-of-the-art methods. With our identification mecha-
nism, AOT-S (82.6% J&F) surpasses CFBI [24] (81.4%)
by +1.2% while running about 4× faster (12.5 vs 3.4FPS).
By using more LSTT blocks, AOT-B effectively improves
the performance to 83.2%. Moreover, by utilizing the mem-
ory reading strategy, the unseen scores of AOT can be fur-
ther improved, and our AOT-L (83.7%/83.6%, 6.3FPS) sig-
nificantly outperforms the previous methods (e.g., CFBI,
81.4%/81.0%, 3.4FPS) on the validation 2018/2019 split
while maintains an efficient speed. After applying test aug-
mentations, we can further boost the performance of AOT-L
to 84.6% on the validation 2019 split. More comparisons
can be found in [25].

5.2. Enhanced CFBI+

We enhance the CFBI+ from two aspects described be-
low. Firstly, we develop several new feature extractors for
stronger image-level feature representation. Secondly, a
modified training strategy from the original CFBI+ is used
for better performance. Table 2 illustrates the performance
of Enhanced CFBI+.

Table 2: Performance of Enhanced CFBI+ on Youtube-VOS
Validation 2019 split. The test-time augmentations are used
during inference.

Seen Unseen

Method J&F J F J F

Baseline 83.5 82.8 87.0 78.3 86.0
CFBI+(U-HRNet) 84.5 83.0 87.6 80.0 87.5
CFBI+(SFNet) 84.8 83.5 88.0 80.0 87.9

ResNeST-101 FAM+FPN

CFBI+ 

Matching 

Process 

ASPP
S=8

S=8

S=8

S=4

S=16

S=8

S=4

Figure 3: Structure of SFNet-CFBI+.

5.2.1 Feature Extractors

SFNet: In order to enhance the semantic representation of
the output of the feature extractor, we choose a more pow-
erful backbone, ResNeSt-101 [27], with the ASPP mod-
ule [2], as demonstrated in Fig. 3. The ASPP module helps
us capture the contextual information at multiple scales.
Furthermore, we use Feature Pyramid Network (FPN) [12]
to fuse the information from small scales to large scales.
Meanwhile, to align feature maps of two adjacent levels in
a feature pyramid, we make use of a Flow Alignment Mod-
ule (FAM) [11] here.

When it comes to the network details, we first extract
four feature maps with different strides (S = 4, 8, 8, 8) from
the backbone and apply the ASPP module to the highest
level feature map. Then the output of the ASPP and the
other three feature maps were sent to the fusion module,
consisting of the Flow Alignment Module (FAM) and Fea-
ture Pyramid Network (FPN). Moreover, the fusion mod-
ule will generate three enhanced feature maps with different
strides (S = 4, 8, 16). Finally, the enhanced feature maps
were sent to the CFBI+ network to do the matching process.
U-HRNet: For semantic segmentation tasks, the strength
of high-resolution representation is also crucial for perfor-
mance. Here, we apply a high-resolution network named U-
HRNet, as shown in Fig. 4. It inherits the advantages of HR-
Net [21], presented as maintaining high-resolution branches
in parallel and performing multi-scale fusion throughout the
network. Meanwhile, it further improves the semantic rep-
resentation and propagates the strongest semantic represen-
tation to the highest resolution more effectively.
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Figure 4: Structure of U-HRNet.

In analogy to the SFNet above, when associating with
CFBI+, three feature maps with strides of 4,8,16 are out-
putted from U-HRNet for computing multi-scale distance
maps.

5.2.2 Training Strategy

In order to get better performance and reduce the train-
ing time consumption of CFBI+, we pretrained SFNet and
UHRNet with coco stuff which has 172 classes in advance.
During the CFBI+ training, we use 8 Tesla V100 GPUs,
and the batch size is 16. We use the initial learning rate
of 2 × 10−2 for 50,000 steps. Then we will fine-tune the
CFBI+ for 20,000 steps.

5.3. Model Ensembling

In the challenge, we apply an online model ensemble
strategy, i.e., the predictions from multiple models are en-
sembled frame by frame during the inference. In this way,
we can use the ensembled better predictions as the memory
masks dynamically, resulting in better performance com-
pared to the common offline ensemble strategy.

5.4. Challenge Results

On the test split of this challenge, our best result ranked
1st, which utilized 7 models in total, consisting of 3
frameworks, including 3 AOT-L [25] models, 3 Enhanced
CFBI+ [26] models, and 1 KMN [15] model with Top-K
attention [3]. The models which share the same framework
diverse in different backbones ([27, 16, 9] or [2, 11, 21]).
As shown in Table 3, our solution achieved the best perfor-
mance on the overall and seen scores.

6. Conclusion

We propose a novel and efficient approach for video ob-
ject segmentation by associating objects with transformers
(AOT) [25], which achieves superior performance and ef-
ficiency on YouTube-VOS. A simple yet effective identifi-
cation mechanism is proposed to associate, match, and de-
code all the objects uniformly under multi-object scenar-
ios. In addition, a long short-term transformer is designed

Table 3: The leaderboard of the VOS Challenge.

Seen Unseen

Team J&F J F J F

cheng321284 83.6 80.9 85.9 79.8 87.7
cncyww 83.9 82.3 87.4 78.8 87.1
qinghualiuyong 84.2 81.6 87.0 79.9 88.1
testing-gg 85.4 83.6 88.8 80.6 88.5
hkchengrex 85.4 82.8 88.3 81.4 89.3
Ours 85.6 83.6 88.8 81.1 88.9

for constructing hierarchical object matching and propaga-
tion for VOS. The hierarchical structure allows us to flexi-
bly balance AOT between real-time speed and state-of-the-
art performance by adjusting the layer number. After en-
sembling two frameworks, AOT [25] and CFBI+ [26], we
ranked 1st in the Track 1 (Video Object Segmentation) of
the 3rd Large-scale Video Object Segmentation Challenge.
We hope both of the frameworks will serve as solid base-
lines for VOS, and the more efficient AOT will help ease
the future study of multi-object VOS and related tasks (e.g.,
video instance segmentation, interactive video object seg-
mentation, and multi-object tracking).
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