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Abstract

Video instance segmentation (VIS) aims to segment and
associate all instances of predefined categories for each
frame in a video. A recently proposed paradigm – Propose-
Reduce, generates instance sequence proposals based on
multiple key frames and reduces redundant sequences of the
same instance. However, new redundancy appears after as-
signing categories to the preserved sequences. In this work,
we introduce a technique – category-aware sequence reduc-
tion, to reduce redundancy within the same category. This
significantly improves the performance under the Propose-
Reduce paradigm. The final model achieves the fourth place
in the 2021 YouTube-VIS challenge with a mAP score of
47.8%.

1. Introduction
Video instance segmentation (VIS) [24] is a task to seg-

ment all instances of the predefined classes in each frame.
Segmented instances are linked throughout the entire video.
It is important in the field of video understanding, which
can be applied to video editing, autonomous driving, etc.

One recent proposed paradigm – Propose-Reduce
(Fig. 1(a)), achieves the state-of-the-art results for VIS. It
tackles VIS in a two-stage pipeline. In the first stage, multi-
ple sequence proposals are generated from sparsely sampled
key frames. The redundant sequences of the same instance
are reduced in the second stage. Preserved sequences are
assigned with corresponding predicted categories.

However, new redundancy appears after the category as-
signment. Sequences assigned to the same category con-
flict with each other under the category-wise evaluation. To
tackle the conflict, this paper proposes a category-aware
reduction (Fig. 1(b)) for sequences within the same cate-
gory. The idea of two types of reductions has ever been ex-
plored in two-stage instance segmentation methods [11, 13].
A category-agnostic reduction for object proposals and a
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Figure 1: We equip (a) Propose-Reduce paradigm [15]
with (b) category-aware sequence reduction.

category-aware reduction after object classification.
Incorporating the category-aware sequence reduction

technique, the accuracy of the best model in [15] is im-
proved by 2% in terms of AP . Equipped with a stronger
classifier, our final model achieves 49.3% on the validation
set and 47.8% on the testing set for the YouTube-VIS 2021
challenge.

2. Related Works
Video Instance Segmentation Methods for video in-
stance segmentation can be grouped into three types of
paradigms: ‘Track-by-Detect’, ‘Clip-Match’ and ‘Propose-
Reduce’. ‘Track-by-Detect’ [24, 6, 19] associates detected
instances into tracklets in a frame-by-frame manner. ‘Clip-
Match’ [1, 2] divides an entire video into multiple clips
and matches sequences between adjacent clips. ‘Propose-
Reduce’ [15] proposes multiple instance sequences at once
and then reduces the redundant ones. This work introduces
a category-aware sequence reduction technique to complete
the ‘Propose-Reduce’ paradigm.

Image Instance Segmentation Image instance segmenta-
tion is a hot task with many solutions [11, 13, 17, 22, 4, 20]
being proposed. One main stream with high performance is
Mask R-CNN [11] and its variants [13, 5, 7]. It is built on
a two-stage detector [21] that adds a mask head in parallel
with the original detection head. In the first stage, RPN [21]
obtains multiple proposals and filters redundant proposals
with a category-agnostic NMS. In the second stage, the de-
tection head predicts category scores, and a category-aware
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Figure 2: Paradigm illustration.MSi , C
agn
Si

and CcateSi
denote the masks, agnostic score and category scores for a sequence.

Ŝ and Ŝc denote sequence sets after reductions. ‘Cate-Agn Seq NMS’ and ‘Cate-Aware Seq NMS’ refer to category-agnostic
(Sec. 3.1) and category-aware (Sec. 3.2) sequence NMS, respectively.

NMS is applied within each category across all predictions.
The category-agnostic sequence NMS proposed in [15] can
be analogous to the first NMS and the category-agnostic se-
quence NMS introduced in this paper to the second one.

3. Method
Given a category set C, VIS targets finding all instance

sequences that belong to the category set in a video. An in-
stance sequence consists of a sequence mask, an assigned
category, and a corresponding score. Sec. 3.1 reviews the
‘Propose-Reduce’ paradigm and Sec. 3.2 introduces the
proposed category-aware sequence reduction.

3.1. Propose-Reduce Paradigm

As shown in Fig. 2, ‘Propose-Reduce’ consists of two
stages. Multiple sequences are first proposed to ensure high
recall, where redundant sequences are then reduced.

Sequence Proposals For a T -frame video, it evenly se-
lects K key frames to detect O instances in each key
frame. They are collected as the proposed instance set
S = {S0, .., Si, .., SO×K−1}. Each instance mask is prop-
agated to the whole video as the corresponding sequence
maskMSi

∈ [0, 1]T×H×W . [15] proposes Sequence Mask
R-CNN (Seq Mask R-CNN) to instantiate this procedure,
that attains a Seq-Prop Head on the Mask R-CNN. Mask
R-CNN obtains instance segmentation in key frames and
sequence masks are propagated via the Seq-Prop head.

Sequence Scoring To reduce redundant sequences in S,
each sequence requires a score to measure its prediction
confidence. In [15], such a sequence score for Si is calcu-
lated from the per-frame detection scores CdetSi

∈ [0, 1]T×|C|

(obtained via the detection head in Seq Mask R-CNN).
Then a category-agnostic score

CagnSi
= max

c∈|C|
CcateSi

(c) , CcateSi
=

1

T

∑
t

CdetSi
(t) , (1)

is used to measure the sequence confidence.

Sequence Reduction With the category-agnostic score
CagnSi

∈ [0, 1], category-agnostic sequence NMS [15] is ap-
plied to remove redundant low-score sequences.

Ŝ← NMS({CagnS0
,MS0}..{C

agn
Si

,MSi}..) . (2)

Preserved sequences Ŝ = {Ŝ0.., Ŝj , ..} are assigned with
categories and corresponding scores Ccate

Ŝj
as the output.

3.2. Category-Aware Sequence NMS

New redundancy appears after the category assignment.
An example is shown in Fig. 2. The first two sequences both
have a high ‘person‘ score. During the evaluation, when the
first sequence matches with the ground truth, the second one
will become a high-ranking false positive that harms the ac-
curacy. To solve this problem, we introduce category-aware
sequence NMS that performs reduction within categories.

Ŝc ← NMS({Ccate
Ŝ0

(c),MŜ0
}..{Ccate

Ŝj
(c),MŜj

}..) , c ∈ C .

(3)
Redundant sequences in Ŝc are suppressed to a lower score
(e.g., 0.78→ 0.49 for the second ‘person’).

In practice, Eq. 2 is implemented by traditional NMS [9]
to reduce the number of sequences, while Eq. 3 is imple-
mented by soft NMS [3] to achieve better accuracy.
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Figure 3: Data statistics for training datasets. Empty columns indicate categories that do not exist in the datasets. *: Category
‘person’ in OpenImages is abandoned since it contains too many ‘person’ annotations.

4. Experiments
Following [15], we incorporate COCO image dataset

[16] to ease the over-fitting issue on YouTube-VIS video
dataset. However, some categories are not collected in
COCO (see Fig. 3). To tackle the category missing prob-
lem, we collect data from OpenImages [14] to cover all cat-
egories. Due to limited computation resources (6 GPUs),
OpenImages is only used to train a stronger image-level
classifier to save training time.

4.1. Datasets

YouTube-VIS YTV-VIS 2021 (abbreviated as YTV) con-
tains 2, 985 training videos, 421 validation videos and 453
test videos. It covers 40 categories that are slightly different
from the 2019 version [24]. Category ‘bird’ is a union of
‘eagle’ and ‘owl’ in 2019. Category ‘monkey’ is a union of
‘monkey’ and ‘ape’ in 2019.

COCO To ease the data insufficiency in YTV, we collect
COCO images to construct 3-frame pseudo videos with
±30◦ rotation [15]. COCO has 35 categories overlapping
with YTV. Out of the 35 categories, 20 are from the COCO
annotations while the remaining 15 from LVIS [10] annota-
tions. Note that the ‘bird’ and ‘monkey’ in YTV are mapped
to ‘eagle+owl’ and ‘monkey+gorilla’ in COCO.

OpenImages Two types of annotations in OpenImages are
collected. One is mask annotations that cover 37 categories
in YTV, while the other is box annotations covering all cat-
egories. The ‘bird’ and ‘fish’ in YTV are mapped to ‘ea-
gle+owl’ and ‘golden fish’ in OpenImages.

Mask annotations are used to train an instance segmen-
tation model [11], while box annotations are used to train a
detection model [21]. In practice, only the detection head is

Figure 4: Examples in OpenImages where not all cars are
annotated. To reduce ambiguity, non-annotated regions are
filled with ImageNet [8] mean values, with respect to the
mask and box annotations.

used in the sequence scoring step. Note that OpenImages is
not densely annotated, where the background may contain
target objects (see Fig. 4). Inspired by [18], we multiply the
image with annotations to exclude the background regions.

4.2. Implementation Details

The ‘Propose-Reduce’ paradigm is instantiated with Seq
Mask R-CNN [15]. OpenImages mask annotations (OImg-
Mask) are used to train a Mask R-CNN [11] and box anno-
tations (OImgBox) are used to train a Faster R-CNN [21].

Training Following the two-stage training in [15], Seq
Mask R-CNN is first trained on the mixed ‘COCO+YTV’
videos for 4 epochs, and then fine-tuned on YTV for
5 epochs. Similarly, Mask R-CNN and Faster R-
CNN are trained on the mixed ‘COCO+YTV+ OImg-
Mask/OImgBox’ images and then fine-tuned on YTV.

Input image size is resized to a fixed 640×320 input size
(keep aspect ratio). All models are trained on 6 NVIDIA
Titan X GPUs. It takes about 3 days to train with ResNet-
50 [12] backbone and 5 days with ResNeXt-101 [23].

Inference In the sequence proposals stage, the number of
key frames (K) is set as 5. In each key frame, the top 10
(O) detected instances with scores higher than 0.2 are used
for generating sequence proposals.
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trainset AP AR@10

R50
YTV 39.4 51.9
+ COCO 41.7 55.0

X101
YTV 42.8 52.9
+ COCO 47.9 58.0

(a) Backbone Analysis: ‘YTV’ de-
notes training on YTV only, while
‘+COCO’ refers to two-stage training
with ‘COCO+YTV’ (Sec. 4.2).

Seq Scoring AP AR@10

- 47.9 58.0
+OMask 49.0 58.3
+OBox 49.3 58.1

(b) Stronger Classifier: ‘+OMask’
and ‘+OBox’ denote models that
trained with additional OpenImages
Mask/Box data.

Category- AP AR@10
agnostic aware

0.5 - 44.9 52.1
0.5 0.5 47.0 55.4
0.7 0.5 47.2 56.2
0.9 0.5 47.9 58.0
- 0.5 47.7 58.8

(c) IoU Threshold: ‘-’ denotes that
the corresponding NMS is not per-
formed.

NMSc AP AR@10

R50
38.7 46.4

X 41.7 55.0

X101
44.9 52.1

X 47.9 58.0

X101∗
47.5 53.6

X 49.3 58.1

(d) Cate-aware NMS: ‘NMSc’ de-
notes category-aware sequence NMS.
‘X101∗’ means using a stronger clas-
sifier trained on OImg Box data.

Table 1: Ablations in the 2021 YouTube-VIS (validation
set). We only show AP and AR@10 (%) for simplicity.

In the sequence reduction stage, sequence IoU [15] is
used to measure the overlapping regions between sequence
masks. Category-agnostic sequence NMS is implemented
with traditional NMS [9] of 0.9 IoU threshold. Category-
aware sequence NMS is implemented with soft-NMS [3] of
0.5 IoU threshold. Categories with a score threshold larger
than 1e-3 are selected for final results.

4.3. Ablation Studies

Backbone Tab. 1a compares the behavior of different back-
bones (i.e., ResNet-50 vs. ResNeXt-101). In terms of AP ,
the large backbone is prone to suffering from over-fitting in
YTV and benefits more from incorporating more training
data. Intriguingly, the AR@10 of both backbones attains
significant improvement with more data.

Stronger Classifier Tab. 1b reports the improvement of
using a stronger classifier in the sequence scoring step
(Sec. 3.1). Using a model trained with OpenImages im-
proves by roughly 1% compared to using the original clas-
sification head in Seq Mask R-CNN. Classifier trained on
OpenImage box annotations is slightly better than it is on
mask annotations.

IoU Threshold Tab. 1c demonstrates the influence of
the IoU threshold for two types of sequence NMS. The
category-aware NMS largely improves the accuracy (44.9
vs. 47.0) by reducing redundancy within categories. Note
that the accuracy changes little with and without the
category-agnostic NMS (47.9 vs. 47.7). But the category-
agnostic NMS can reduce largely redundant sequences to
reduce computation requirements.

AP AP@50 AP@75 AR@1 AR@10

tuantng 54.1 74.2 61.6 43.3 58.9
eastonssy 52.3 76.7 57.7 43.9 57.0
vidit98 49.1 68.1 54.5 41.0 55.0
Ours 47.8 69.3 52.7 42.2 59.1

hongsong.wang 47.6 68.4 52.9 41.4 54.6
gb7 47.3 66.5 51.1 40.5 51.6

zfonemore 46.1 64.4 51.0 38.3 50.6
DeepBlueAI 46.0 64.6 52.0 38.7 54.2

Table 2: Results in the 2021 YouTube-VIS Challenge (test
set), compared to the top 7 other teams.

Category-Aware Sequence NMS Tab. 1d studies the ef-
fect of category-aware sequence NMS. Equipped with the
category-aware NMS, the accuracy is stably improved over
different baseline models. This technique can serve as an
effective module for the ‘Propose-Reduce’ paradigm.

4.4. Testing Challenge

Tab. 2 illustrates the results of the challenge. The sub-
mitted model is a Seq Mask R-CNN of ResNeXt-101 back-
bone, equipped with a strong classifier trained on OpenIm-
age Box data. Our approach achieves the highest AR@10,
which indicates its high recall characteristics.

5. Conclusion

In this paper, we introduce a category-aware sequence
NMS to enhance the ‘Propose-Reduce’ paradigm for video
instance segmentation. We also study the improvement of
using extra OpenImages data to train a stronger classifier.
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