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Abstract

Video Instance Segmentation (VIS) is a multi-task
problem performing detection, segmentation, and tracking
simultaneously.  Extended from image set applications,
video data additionally induces the temporal information,
which, if handled appropriately, is very useful to identify
and predict object motions. In this work, we design a
unified model to mutually learn these tasks. Specifically,
we propose two modules, named Temporally Correlated
Instance Segmentation (TCIS) and Bidirectional Tracking
(BiTrack), to take the benefit of the temporal correlation
between the object’s instance masks across adjacent frames.
On the other hand, video data is often redundant due
to the frame’s overlap. Our analysis shows that this
problem is particularly severe for the YoutubeVOS-VIS2021
data. Therefore, we propose a Multi-Source Data (MSD)
training mechanism to compensate for the data deficiency.
By combining these techniques with a bag of tricks, the
network performance is significantly boosted compared
to the baseline, and outperforms other methods by a
considerable margin on the YoutubeVOS-VIS 2019 and
2021 datasets.

1. Introduction

In this technical report, we present a solution for the
task of Video Instance Segmentation (VIS), specifically
targeting the VIS dataset hold by the CVPR2021-
YoutubeVOS 2021 Workshop. VIS, first introduced in the
YoutubeVOS 2019 challenge [19], aims to perform object
detection, instance segmentation, and object tracking across
video frames. There are 2883 videos with 40 categories in
the original 2019 version. In 2021, the dataset is enriched
with more than 3800 videos, each has about 30 frames, and
the categories are also refined.

fequal contribution

VIS by its nature is a multi-task learning problem, and
generally there two main approaches. A straightforward
way is to perform each individual task separately and
sequentially [14]]. However, since the components are
trained and inferred independently, the full pipeline is
complicated, slow, and sub-optimal. The second approach
[L7, 16 I5] aims to build a single model that jointly learns
and performs all the tasks simultaneously. This not only
simplifies the pipeline, reduces the inference latency, but
potentially improves the final performance.

Our solution also follows the unified direction but is
designed to address several specific technical challenges
for the dataset. We also hope that it can serve as a
strong baseline for more general applications. Our main
contributions for the challenge are summarized as follows:

e Our data analysis shows that only a small portion
(17%) of the training images are useful, while the rest
(83%) are ineffective. We hence propose a training
mechanism, named Multi-Source Data (MSD), which
could both increase the diversity of data and improves
model generalization.

* We exploit multi-task learning and propose the
Temporally Correlated Instance Segmentation (TCIS)
module to learn the temporal relation between instance
masks over adjacent frames.

* We suggest a Bidirectional Tracking (BiTrack) post-
processing step to track objects in both forward and
backward order to recall more objects, before merging
two sets of tracks to obtain a final result.

¢ Our method secures the 1st rank on the YoutubeVOS-
VIS2021, with the score 0.575 mAP on the public
validation set, and 0.541 mAP on the private test
set. Evaluating the YouTubeVOS-VIS2019 dataset,
our solution also obtains 0.543 mAP, setting a new
record for the benchmark.
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Figure 1. Our baseline framework is based on Mask-RCNN [8]]. It has a Backbone, a Feature Pyramid Network with 6 levels, an RPN head
in the first stage. The second stage has three branches: object bounding box detection, instance mask segmentation, and object track heads.

The paper is organized as follows. Section [J]summarizes
our baseline method, including the model architecture,
training, and inference pipeline. Section (3| describes our
main solutions, including the data analysis and techniques
to improve data diversity, the TCIS component, and
a bag of useful tricks to further improve the results.
The implementation details, ablation study for different
components, and comparison with other methods are
presented in section[d] Section [5|concludes our paper.

2. Baseline

Network architecture Our model is built upon Mask-
RCNN [8], as illustrated in Fig. [I] The network includes
a backbone and a Feature Pyramid Network (FPN) [10] to
extract features. A Regional Proposal Network (RPN) is
used in the first stage to detect object regions. Given the
proposal boxes, the second stage uses a Rol-Align operator
to crop features and feed to 3 sub-networks, namely the
Box Head for detection, Mask Head for Segmentation, and
Track Head [16] to extract embedding vector for object
association. Here, we also add an extra level P7 to the FPN,
resulting in 6 levels in total.

Training pipeline To train the tracking module, we feed
a pair of frames (X;, X;), where X; is the key frame at
time ¢, and X is randomly sampled within the interval [t —
A,t + A]. Since they are significantly overlapped, either
one of the frames is sufficient for training the detection and
the segmentation modules.

Inference pipeline Given a video, the inference is
sequentially performed to obtain object attributes (box,
label, mask, and embedding). Meanwhile, the data
association is conducted online to link the same objects
across frames. Finally, we can construct series of unique
object masks in the video to output final results.

3. Proposed method
3.1. Data analysis

The YoutubeVOS-VIS2021 dataset has about 90k
images, extracted from 3k different videos. However,
because the camera may be fixed, and the objects can stay
idle or move slowly, the frames in a video can be extremely
overlapped, as illustrated in Fig. Therefore, we conduct
two experiments to analyze the data efficiency.

Firstly, we study the severity of overlapping due to
object’s slow motion and fixed camera. Specifically, we
calculate the Intersection over Union (IoU) of each object’s
bounding box in two consecutive frames, and then take the
average loU score over the video. The IoU histogram of the
dataset is then shown in Fig. [2a] We see that the portion of
objects having IoU overlap above 0.8 is dominant, verifying
that the object displacement is indeed trivial and the overlap
is severe. In the second experiment, we uniformly sample
different number of frames (eg. 1,2,5,10) in a video to train
the model and compare with the results using all frames.
For each key-frame, we apply affine transforms to generate
a pseudo reference frame for tracking. As shown in Fig.
2b| using only 1 frame in the video already achieves 23.6%
mAP, while 5 frames can reach 30.7% mAP, almost equal
if using all frames (30.9% mAP). This confirms that 83.3%
of the data is redundant and basically ineffectual.

3.2. Multi-Source Data

To enrich the dataset, we utilize a subset from
Openlmage [[1], that has common object categories with
Youtube VOS-VIS2021, such as bird, fish, turtle. This adds
14k images to the dataset. We also combine with the
MS COCO 2017 dataset [11]], yielding approximately 221k
images in total. However, using a heterogeneous dataset
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[15], we assume that the remaining 58 classes from
COCO can be grouped into K auxiliary classes, leading
to predict 40 + K classes totally. However, we do not
manually assign the category for these K classes, but let
the network learn the concept of auxiliary classes implicitly
and automatically. The proposed method is described in
Algorithm [T}
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Figure 2. Data efficiency analysis. (a) Histogram of bounding
boxes’s IoU of the same objects appearing in two adjacent-frames.
The higher IoU values, the more static objects. (b) Accuracy of
models trained with different number of frames. (¢) Many frames
in a video are almost identical.

brings some technical issues due to the label difference,
that is, no tracking labels in both Openlmage and COCO,
low quality or missing ground truth mask in Openlmage,
and class mismatch between Youtube VIS and COCO. We
address the problems as follows.

Semi-supervised Tracking learning To overcome the
absence of ground truth tracking labels, we generate pseudo
track-ids by applying augmentations such as shift, rotate,
and flip on the key-frame to get its transformed version.
Boxes of the same object in different transformed images
are assigned with the same and unique track-id.

Weakly-supervised Segmentation learning Images in
Openlmage dataset can have no or noisy segmentation
mask. Hence, we ignore the segmentation loss of these
samples and use them only for detection and tracking
training.

Dataset Fusion with Auxiliary Classes The
YoutubeVOS-VIS2021 and the MS COCO 2017 datasets
have 40 and 80 classes, respectively, and they share 22
categories in common. Conveniently, we can simply ignore
the objects of the remaining classes. However, COCO
has high-quality labels, especially segmentation masks.
Ignoring these classes discards a majority of the dataset
while learning all of them will shift our model’s target
attention. Therefore, to utilize all the available labeled
samples, we propose to relax their categories, casting the
problem as dataset fusion with auxiliary classes. Following

Algorithm 1: Dataset fusion with auxiliary classes

Input: Batch size N; Predicted probs § = {§; }1L;
Labels I = {I;}},;
Output: New labels y = {y;},
for i in range(N) do
if l; = C + 1 (#if it is auxiliary class) then
if C' < argmax(y;) < C + K then
# it is doing correct, continue
| L et
else
# randomly pickup among K classes
yi = uniform(C +1,C + K)

end

else
| yvi=1
end

end

Concretely, in the case of auxiliary classes, the category
is selected based on the corresponding prediction. If the
predicted index falls into the auxiliary indices, the predicted
index is the label, otherwise, the label is randomly sampled
in range [41,40 + K]. This mechanism can benefit from
two aspects. First, if K is set to 1, the number of samples of
this class will be significantly imbalanced with our target
classes. In addition, the concept of this class is hard to
learn, due to the inconsistency of the feature. Secondly,
by randomly sampling class indices, we ensure that the
model does not bias to a specific class index, resulting in
the extreme case K = 1.

3.3. Temporally Correlated Instance Segmentation

Simply applying the techniques from image to video
is generally less effective, since the temporal correlation
is not taken into account. In fact, we observe that an
instance mask in a reference frame is highly related to the
corresponding instance mask in a key frame. Consequently,
we introduce the module named Temporally Correlated
Instance Segmentation (TCIS) to exploit this feature.

Figure [3] depicts the TCIS architecture, in which the
Correlation Transform is a standard ResNet block. Let F}
and F/™* be the Rol feature of the same instance i*" at
frame ¢ and ¢ + A, respectively. F! . is the ground truth

mask of instance ¢ at frame ¢t. The TCIS module operates
by the following steps:
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Figure 3. [llustration of TCIS module (best viewed in color). Step
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1 computes attention-masked feature M and spatial shift as the

feature and deformable-offsets inputs, which are fed to the deformable convolution to compute correlated feature Fit’tJrA in Step 2. Step3

predicts mask for the instance in the reference frame.

1. We multiply the feature F} with its ground truth
mask F!. to create the attention-masked feature
M. Meanwhile, we subtract F! for F/*2, and fed
the difference to the Correlation Transform block to
compute the spatial shift S,f A

. Deformable Convolution [4] receives the spatial shift

St "+ 45 the offset input and the attention-masked 1, H
as the feature input, outputs the temporally correlated
feature Ff’HA. The offset Sf’HA helps TCIS pay
attention to motion of the instance 7 between the two
frames.

3. Finally, Fit’t+A and Fz.t"’A is added together and used
as the input for the mask head. We share the same
mask head between TCIS and the main branch.

Our TCIS is borrowed from the module MaskProp [2].
The difference is that, objects’ features in MaskProp are
jointly computed on the whole image, while our approach
processes each ROI instance independently. Moreover,
TCIS is employed as an auxiliary task during training only,
hence induces no additional computation at inference.

3.4. Bidirectional Tracking

Since a motion can happen both forward and backward
in time, we propose a post-processing step called
Bidirectional Tracking (BiTrack) to further enhance the
prediction consistency, as described in Algorithm 2]

Concretely, we first predict objects’ bounding boxes,
class scores, segmentation masks, and embeddings for all
frames in a video. We then run the object ID association
backward and forward, matching new objects with existing
objects stored in a buffer. If the new object is matched with
the existing object, ID of the existing object is assigned to

Algorithm 2: Bidirectional Tracking
Input:
* Forward tracklets F'.
* Backward tracklets B.
e IsOwverlap(f,b): the function used to check if tracklet f
and tracklet b are overlapped.
Output: Final tracklets M
Initialization
// Init empty matched lists for

forward tracklets and backward
tracklets

Feo,Beo

end

for fin range(F) do

for b in range(B) do

if b & B and IsOverlap(f,b) then
m = Merge(f,b) ;
M+~ MUm;
B+ BUb ;
Fe Fuf ;

else

| continue
end

end

end

M+~ MUF\EF)U(B\B);
return M/

the new object. Otherwise, a new ID will be assigned. The
process continues until all frames are checked.
Consequently, we obtain the tracklets F' from the
forward order, and the tracklets B from the backward order.
We consider a frame as valid if it has objects detected in the



Figure 4. Example of forward tracklets (first row), backward tracklets (second row), and merged tracklets(bottom row). The missing
Frisbee discs are marked by red boxes. Forward tracklets and backward tracklets compensate each other by being able to keep track of the
objects that the other missed, resulting in the merged tracklets with a better result.

both tracklets. For the same instance, the forward tracklet
f and the backward tracklet b may be different. BiTrack
module is applied to merge high overlapping tracklets into
a final one. Concretely, two tracklets are merged together
if the average of IoU between their boxes in valid frames is
greater than a threshold thr.

Figure M illustrates an example of how a forward
tracklets (first row) and a backward tracklets (second row)
are merged together into the final result (third row). In the
forward tracklets, as seen in the lower half of the images,
it is hard to track the Frisbee disc (red box) in the forward
path, but easier if doing it backward. Vice versa for another
Frisbee disc appearing on the upper half of the images. As
a result, two tracklets compensate each other, yielding more
robust tracking results.

3.5. Bag of tricks
3.5.1 Multi-task learning

Besides main tasks, we also train the model with the
auxiliary tasks, described as follows.

* Semantic segmentation The mask head for predicting
instance masks only focuses on local information
belonging to instances without learning a global
concept. Therefore, we suggest adding a semantic
segmentation branch to predict masks on a global
scale. Specifically, the feature output from the P3 level
of FPN is forwarded to stacked convolutions to predict
a semantic segmentation mask with 40 channels.

* Multi-label classification We propose to add a multi-
label classification sub-network to predict categories.
Concretely, the backbone feature at the C5 level is fed

into the sub-network to predict a 40-class vector. To
allow multi-label prediction, we use the Binary Cross
Entropy loss during the training.

e Mask scoring We further predict the instance
segmentation quality in terms of mask IoU. In
inference, the mask score is multiplied with the
classification score to improve prediction confidence.

3.5.2 Ensemble

We ensemble the predictions of different models into the
final results as follows.

* Detection We apply Greedy Auto Ensemble [21] to
merge predicted boxes of models. Note that, to ensure
the merged detection score would be well calibrated,
we do not average scores of merged boxes. Instead,
we perform the max operation so that the final score
would be inherited from the dominant box.

* Segmentation and Tracking The bounding boxes
obtained from the ensembled models are treated
as proposals, which are then fed to different
models to extract segmentation mask and embedding
representation.  Finally, we average masks and
embeddings of models to obtain the final ones.

3.5.3 Pseudo label

We take the advantage of the ensemble to generate pseudo
labels on the detection of the valset. Additionally, we feed
these boxes through the tracking module to obtain the most
confident ones. Our motivation is that if we can match



Experiments | TCIS MultiTask MSD  BiTrack | mAP AP50 AP75 ARl AR10 | AmAP(%)
Al 0.309  0.501 0.338  0.269 0.346 -
A2 v 0331 0535 0354 0.285 0.368 22
A3 v v 0338 0.546 0356 0.287 0.374 0.7
A4 v v v 0364 0570 0402 0299 0.397 2.6
A5 v v v v 0388 0.589 0.438 0.320 0.436 24

Table 1. Ablation study on the proposed components using the backbone ResNeSt50 on the Youtube VOS-VIS2021 valset. TCIS: Temporal
Correlated Instance Segmentation, MultiTask: Multi-task learning, MSD: Multi-Source Data, BiTrack: Bi-directional tracking.

Experiments Method mAP AP50 AP75 ARl ARI10
B1 S101 0.418 0.652 0464 0340 0.454
B2 SwinS 0440 0.666 0504 0359 0476
B3 Ensemble (B1, B2) 0464 0.698 0515 0376 0.505
B4 S101 + Pseudo 0539 0.777 0.628 0.421 0578
B5 SwinS + Pseudo 0.560 0.792  0.644 0430 0.594
B6 Ensemble (B1,B2, B4,B5) | 0.575 0.806 0.671 0.441 0.609

Table 2. Ablation study on the bag of tricks with two backbones ResNeSt101 (S101) and SwinS on the YoutubeVOS-VIS2021 valset.

boxes over frames, these boxes are likely to represent a
foreground object. Thus, they are more reliable than non-
trackable ones. Afterward, we combine the trainset and the
pseudo-label (only detection) valset to train new networks.

3.5.4 Label voting

In the tracking-by-detection approach, if the detector
misclassifies object labels, the tracking consequently fails
to track the object. Consequently, this can break a tracklet
into many fragments, and damage the results. To ease this
issue, we relax the label consistency criterion. Therefore,
detected objects with different categories could be matched
together based on their visual embeddings. To this end, a
track may still contain different labels, hence, we select the
one with highest frequency as the final label for that track.

3.5.5 Multi-scale testing

We utilize Multi-scale testing for further boosting network
performance. Alongside the 1x image scale, we also
exploit 0.7x and 1.3 x scales.

4. Experiments
4.1. Implementation details

All models are trained with Synchronized BatchNorm
of batch size 16 on 4 GPUs (4 images per GPU). We use
two types of backbone: ResNeSt [22] and SwinTransformer
[12]. For ResNeSt backbone, the optimizer is SGD
with momentum 0.9 and initial learning rate 1e~2, while
AdamW [13]] with initial learning rate 5e~° is used for
SwinTransformer. Each experiment is trained by 12 epochs,
in which, the learning rate is dropped 10 times at the end of
epoch 8 and 11. For fast training, we use the image size of

360x640. In our experiments, training with double image
size only provides negligible improvement, so this image
scale is sufficient. Our code is based on MMDetection [3],
and networks are pretrained on the MS COCO 2017 dataset.

4.2. Ablation study

Proposed components At first, we use the model with
backbone ResNeSt50 to evaluate the effects of components
including Temporally Correlated Instance Segmentation
(TCIS), Multi-task learning (MaskScoring, SemSeg, and
Multi-label classification), Multi-Source Data (MSD), and
Bidirectional Tracking (BiTrack). Table [I] lists results on
the YoutubeVOS-VIS2021 valset. In Exp. Al, we start
by a baseline model and achieve 0.309 mAP. By adding
TCIS in Exp. A2, the metric is improved by 2.2% mAP.
Multi-task add-ins (Exp. A3) only give a small gain by
0.7% mAP. Then, when applying MSD (Exp. A4), the mAP
reaches 0.364. Finally, BiTrack (Exp. A5) increases the
result to 0.388 mAP. These experiments reveal that the three
main proposed components constantly leverage the model
performance by more than 2% mAP.

Bag of tricks We combine all mentioned techniques in
Exp. A5 and increase model capacity by training two
models with larger backbones ResNeSt101 (Exp. B1) and
SwinS (Exp. B2), yielding 0.418 and 0.440 mAP (see
Tab. [2), respectively. By ensembling these two models,
we obtain an improved mAP at 0.464 in Exp. B3. After
generating pseudo data for the detection part in valset, we
combine the trainset and valset to re-train the two models
and reach boosted performance with mAP 0.539 (Exp. B4)
and 0.560 (Exp. B5). Finally, by ensembling B1, B2, B4,
and B5, we achieve the state-of-the-art with mAP 0.575.



4.3. Comparison

Method mAP AP50 AP75 ARl1 ARI10

tuantng (ours) | 0.575  0.806 0.671 0.441 0.609
eastonssy 0.543 0.792 0.611 0.439 0.588

linhj 0495 0.727 0.548 0419 0.591
zfonemore 0490 0.684 0.548 0393 0.523
vidit98 0488 0.694 0.549 0401 0.550

Table 3. Comparison with other methods on the YoutubeVOS-
VIS2021 valset.

Method mAP AP50 AP75 ARl ARI10

tuantng (ours) | 0.541  0.742 0.616 0.433 0.589
eastonssy 0.523 0.767 0577 0439 0.570
vidit98 0491 0.681 0545 0410 0.550
linhj 0478 0.693 0.527 0422 0.591
hongsong.wang | 0.476 0.684 0529 0414 0.546

Table 4. Comparison with other methods on the YoutubeVOS-
VIS2021 testset.

YoutubeVOS-VIS2021 We use the solution in Exp. B6
to benchmark on both YoutubeVOS-VIS2021 valset and
testset. Results in Tab. [3] and Tab. show that our
method surpasses others by a large margin. Specifically,
in the valset, our solution achieves 0.575 mAP, which is a
large gap of more than 3% to the second method. While
transferring to the testset, we preserve the first rank to be
the State-of-the-art with 0.541 mAP. This indicates that the
proposed method has a strong and stable performance on the
VIS task. Figure [5|shows sample predictions of our model
on the testset. The model can accurately detect categories,
segment instance masks, and track objects over frames.

YoutubeVOS-VIS2019 The model wused for this
benchmark contains backbone SwinS, TCIS, MultiTask,
and BiTrack. The result is shown in Tab. [8

Method mAP AP50 AP75 ARl ARI0
Ours 0.543 0.766 0.656 0.470 0.579
MaskProp [2] 0.425 - 0.456 - -
VisTR [18] 0.401 0.640 0450 0383 0.449
CrossVIS [20] | 0.366  0.573  0.397 0.360 0.420
CompFeat [7] | 0.353 0.560 0.386 0.331 0.403

Table 5. Comparison with other methods on the YoutubeVOS-
VIS2019 valset. Bold symbols represent the best metrics.

It can be seen that, without MSD, our method can
still surpass recent ones with a remarkable gap, i.e., we
achieve 0.543 mAP, which is around 11.0% better than the
second method (MaskProp). This again demonstrates the
effectiveness and generalization of the proposed solution.

5. Conclusion

In this work, we design a unified approach to perform
the VIS task within a single model. The success of our
solution mainly comes from three proposed components,
namely Temporally Correlated Instance Segmentation,
Multi-Source Data, and Bidirectional Tracking, as well as
applying several practical tricks, e.g. ensemble and pseudo
label. Specifically, the three proposed components can
boost the performance by approximately 8% mAP with
the standard backbone, while the bag of tricks give us
a significant improvement by more than 15% mAP with
stronger backbones. Leveraging this robust performance,
our method outperforms the others significantly and makes
new records on the YoutubeVOS VIS 2019 and 2021
datasets.
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