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Abstract

In this report we describe the technical details of the im-
plementation we submitted to the 2021 YouTubeVIS chal-
lenge. We propose a novel extension of YoloV4, for video
instance segmentation.

1. Introduction

The YouTube VIS dataset proposed in [43] has changed
the way of considering video segmentation, by introducing
a good number of videos with a significant assortment of
situations and scenes and with 40 classes of objects. The
diversity of high dynamic video scenes makes the instance
segmentation and tracking task quite realistic for several ap-
plications and at the same time very challenging.

In recent years, videos interpretation has taken advantage
of the introduction of spatio-temporal models with inflated
kernels as I3D pretrained on Kinetics [8], which marks a
watershed with the shallower 3D ConvNet conjugated with
LSTM. I3D and its extensions, such as R (2 + 1) D by [35],
and SlowFast by [12] can capture different degrees of tem-
poral variations, as described in [8], though multi-tracking,
as in YouTubeVIS, can take little advantage of these mod-
els. The reason is that despite dynamic features can help in
predicting a subject motion, multi-tracking requires to max-
imize the matching between the subjects appearing in two
frames, in parallel, taking into account the disruption of el-
ements coming in and out of the scene.

Another relevant aspect of multi-tracking in YouTube-
VIS is the fact that the transitions are dynamic, as they
change scene by scene.

We have submitted to the challenge our proposed in-
stance segmentation model based on YOLOV4 together
with a greedy tracker, which we named YOLOV4+1seg,
and which we describe in the next sections.

2. Related

Video instance segmentation and tracking is a relatively
young research topic clearly assessed in [44]. The task is
to identify object instances and their class even if they ap-
pear in a single frame, segment and track them through-
out the video frames. It requires consistency of the labels
when an object instance is occluded and re-appear again af-
ter few frames [44]. Although the video instance segmenta-
tion task was introduced recently, a lot of work on sub-tasks
of it like image instance segmentation, video object track-
ing, and video semantic segmentation has been done.

Image instance segmentation. The origin of this image
and video instance segmentation is the same as both re-
quire to group pixels on object instances and semantically
classify them [44]. Video instance segmentation, however,
also requires to group object instances along all the video
frames. Usually, two-stage methods are applied to solve the
instance segmentation and classification see, for example,
[11, 10, 21, 14]. In our proposed method we also rely on a
two stage solution extending YOLOV4 with segmentation.

Video object detection. This task requires detecting ob-
jects in video. Recent studies show that spatio-temporal fea-
tures of consequent video frames improves detection results
of individual frames [46, 2, 41, 13]. These metrics focus
on single frames without considering instances consistency
across frames, which is crucial for tracking.

Video object tracking. There are several tracking related
tasks. The semi-supervised task requires a bounding box for
each element in the first frame [3, 28, 13]. The unsupervised
one requires to detect an object and track it [31, 40, 33].
Even though the latter is quite similar to video instance seg-
mentation, it requires only to detect bounding boxes.
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Figure 1. Backbone, FPN and decoding graph of the Y oloV 4+1 model for the instance segmentation

Video semantic segmentation. This task is a direct ex-
tension of the image segmentation task requiring the classi-
fication of each pixel. Some studies use optical flow as tem-
poral information to improve the performance of semantic
segmentation models [47, 22, 32]. Generally, during infer-
ence, the ground truth of the first frame is used to propagate
motion information to all the video frames. The main differ-
ence between this task and the video instance segmentation
task is that it does not require to match instances along the
video frames.

Video object segmentation. This task requires to seg-
ment objects without accounting their class [45, 17, 34] and
often it asks to propagate the mask in the first frame to the
remaining video frames [45, 17, 34, 36, 30, 7].

This task can be semi-supervised or unsupervised [34,
17]. On the other hand, VIS requires to detect instances,
segment and link them along the whole video.

VIS task and our contribution Most of the instance seg-
mentation models use template masks and fine-tune with
them [26, 20, 1, 37, 25, 7]. The use of mask make the
strong assumption that all the element in the scene appear
in the first frame. Similarly, in [9, 16, 29, 42, 45] the masks
of the initial frame are used for later comparison, which
does not allow to discover new subjects that appear after
the first frame. Some approaches to video instance segmen-
tation models use re-detection for tracking. Mainly they
use two-stage R-CNN detectors as pairs of Siamese net-
works [19, 38], but it is not clear on how many classes and
instances these methods provide a good accuracy. In our
model we do not use prior bounding box or either masks,
the additional layer on the neck of the network allows han-

dling VIS task with the high result and applicable real-time
speed.

3. Method
As outlined in the introduction we have used for the in-

stance segmentation part an extension of YOLOV4 which
we call Y oloV 4+1 and for the multi-tracker we used a
greedy association method based on pruning heuristics.

3.1. Instances tracking

This is a simple local method which aims at a fast mit-
igation of the bad associations which propagates over the
tracking sequence. The method is divided in 4 steps:

• Given a sequence of two frames at time t and t + 1
compute the cost matrix A where each entry from row
i (detections at time t) and column j (detections at time
t+ 1) is the class+mask IOU i

j score.

• Gating: check for associations which score is lower
than a fixed threshold.

• Best Friend: select only associations which are mini-
mum of both rows and columns.

• Lonely Best Friend: select only associations whose
difference of minimum and second minimum is greater
than a fixed threshold.

3.2. Instances segmentation

The proposed model is based on the YoloV4 architecture
[4] for detection, which we extend to cope with instance
segmentation. The choice of YoloV4 [4] is natural for track-
ing, as YoloV4 is designed for fast detection.
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Figure 2. Feature maps of the upper (first row) and lower (second row) level of the pyramid, from the shallower (first column) to the
deeper output layer (last column). Notice that bigger objects are encoded at deeper level, while the smallest ones do no survive at the
down-sampling.

YoloV4 baseline architecture is formed by a backbone, a
neck and a detection head. According to the authors [4]
CSPDarknet53 (CSP is the acronym of Cross Stage Par-
tial Network) is the best backbone on COCO dataset [23].
CSPDarknet53[4] is topped by a Spatial Pyramid Pooling
(SPP) allowing to plug-into the feature pyramid network
(FPN). The SPP had been adapted from [15] already in
YoloV3 by concatenating max-pooling outputs, with the ef-
fect of increasing the receptive fields.

In the proposed model we adopt CSPDarknet53, with
Mish activation [27] expanding it with a layer. In fact, we
expand the FPN with a layer too, both in top-down and
bottom-up pathways, with lateral connections, namely the
elements b2, p2 and n2, see Figure 1. Due to the limit
of YoloV4 on small objects. Features from larger maps
extending the range from coarse to fine in the bottom-up
and top-down pathways improve localization [5, 6] together
with the aggregating step carried out by the lateral connec-
tions, see Figure 1. Despite this extension of the pyramid is
crucial for instance segmentation, its drawback is the slow-
ing down of the detection head, as we carry on all the layers
also to the proposal graph. Here we introduce concatena-
tion to aggregate layers, as opposed to PANet [24], which
adopts addition. Each block of our FPN, differently from
PANet [24], is structured as in YoloV4, though extended.
Namely, our FPN aggregates the reconstructed layer with
the corresponding feature map after one convolution, an up-
sampling (resp. down-sampling) and a second convolution
with the same one dimensional kernel. After the concatena-
tion, a kernel of size 1 is alternated with a kernel of size 3
doubling the channels dimension. This induces dilation and
contraction of features. In PANet [24], on the other hand,
the 3 dimensional kernels are added all to the bottom of
the top-down pathway, while in the bottom-up the kernels

have all size 3 and the same number of channels, tailoring
the FPN to large images. The results of our strategy on the
feature maps can be seen in Figure 2.

YoloV4 [4] detection head uses fixed ratios for the an-
chors, which are given as priors, actually computed in ad-
vance by Kmeans, and uses the predictions from the FPN
encoded as rough proposals, including their confidence.
With similar perspective for the mask prediction, we have
created an encode-decode-graph, which separates the pre-
dictions from the features embeddings to be used in the ROI
pooling for each target segmentation.

Generating embeddings for features segmentation was
also done in [39], though here [39] the authors use the em-
beddings to capture the features of each subject identity in
the whole dataset, which is an impossible endeavor for a
huge dataset with hundreds of thousands identities.

The predictions, for the detection head, are encoded by
convolving each pyramid layer with kernels of size one and
three, taking into account the anchors ratios, and suitably
reshaping and transposing the obtained tensors. Figure 2
show the features out-coming from the backbone, from the
FPN and the encode-decode graph.

For the detection head we actually follow YoloV4
main structure in our proposals graph and ROIAlign. The
predictions are tensors of size nB × nA× nw× nh× nC,
where nB is the batch size (8 for us) nA is the number of
anchors for each pyramid layers (which strongly depends
on the dataset, e.g. for YouTubeVIS21 10 clusters for
each of the 4 layers give a reasonable optimal mAP of
0.8), nW and nH specify the pyramid layer size and nC
are the principal channels: 4+1 for the regression and
confidence box, k for the classification according to the
number of classes. Tensors are decoded first by separating
the confidence, which is transformed into a probability by



Figure 3. Instance segmentation Average Precision Results on YouTubeVIS21 at 0.5, 0.8 and 0.5-0.95 mAP, same metrics used for COCO
instance segmentation dataset, which takes into account segmentation IOU and classification.

softmax, and then by computing the deviation from the
ground truth as a δ-map with respect to a fixed grid. The
δ-map is used to learn the displacement of the proposals
from ground truth.

The decoded proposals are selected by consistency
(size and proportion) and score, using regular non-max
suppression algorithm; first for each level of the pyramid,
then on all levels, in order to guarantee higher variety
and less impact on device memory. Computing IOU
between proposals and ground truth we can assign the
relative instance to be segmented. At the same time ROI
Pooling takes place, in particular we have adopted the same
strategy used in PANet, namely Adaptive Feature Pooling,
in which using the proposals we cut and resize the regions
of interest on the embeddings produced by the four levels
of the pyramid. These new features are fed to a different
convolutional subnet which learn instance segmentation.
MaskRCNN and similiar approaches makes use of a third
subnet which is trained to predict classes and deviation of
the proposals from the ground truth.

Joint Losses The multi-task nature of the network re-
quires the adoption of four different losses, one for each
head. As stated before bounding box regression is per-
formed minimizing the Smooth L1 Loss with respect to the
encoded anchors deviation from the ground truth. Proposal
confidence and segmentation optimization follows the stan-
dard binary cross entropy loss with sigmoid, while a cross

entropy loss with softmax is used to optimize the multi-class
classification problem. Each class is encoded at the centroid
of each instance, while the surrounding area is unlabeled
in order to prevent the injection of noise in case of nearby
classes.

The joint of the learning objectives of each head is per-
formed by the adoption of a weighting mechanism named
Automatic Loss Balancing, namely the version proposed
here [18]. Which is nothing more than a weighted sum of
the task losses:

Ltot =

M∑
i

N∑
j

1

2

( 1

ew
i
j

Li
j + wi

j

)
(1)

with M the number of pyramid layers, N the number of the
considered loss and wi

j the learnable weighting coefficient
of the i− th layer and the j − th loss function.

4. Implementation details

The method is implemented in Tensorflow 2.3

5. Results

5.1. Results of the instance segmentation

Results are illustrated in Figure 3 showing the average
precision and in Figure 4 showing the confusion matrix for
the 40 classes.



Figure 4. Confusion Matrix over 40 classes of YouTubeVIS21 dataset.
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