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Abstract

Semi-supervised video object segmentation is an in-
teresting yet challenging task in machine learning. In
this work, we conduct a series of refinements with the
propagation-based video object segmentation method and
empirically evaluate their impact on the final model perfor-
mance through ablation study. By taking all the refinements,
we improve the space-time memory networks to achieve a
Overall of 79.1 on the Youtube-VOS Challenge 2019.

1. Introduction

In recent years, video object segmentation has attracted
much attention in the computer vision community [18, 12,
6, 1, 9, 15, 17]. For a given video, video object segmenta-
tion is to classify the foreground and the background pixels
in all frames, which is an essential technique for many tasks,
such as video analysis, video editing, video summarization
and so on. However, video object segmentation is far from a
solved problem, both quality and speed are extremely vital
for it.

The tremendous development of deep convolution neu-
ral networks bring huge progress in many areas, including
image classification [5, 13], human pose estimation [16]
and video object segmentation [18, 12, 6, 1, 9, 15]. These
works can be divided into two classes: propagation-based
methods [18, 12, 6] and detection based methods [1, 9, 15].
Propagation based methods, learn a convolution neural net-
work to leverage the temporal coherence of object motion
and propagate the mask of the previous frame to current
frame. However, there exists some challenging cases, such
as occlusions and rapid motion, which cannot be well ad-
dressed by the propagation methods. In addition, the propa-
gation error can be accumulated. Detection-based methods,
learn the appearance of the target object from a given anno-
tated frame, and perform a pixel-level detection of the tar-
get object at each frame. However, they often fail to adapt
to appearance changes and have difficulty separating object
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Figure 1. Overview of the Space-Time Memory Networks.

instances with similar appearances.
Space-Time Memory Networks [10] (STMN) is one of

the propagation-based methods, which explores and com-
putes the spatio-temporal attention on every pixel in multi-
ple frames to segment the foreground and the background
pixels. By using multi-frame information, it can relieve
the bad performance caused by appearance changes, occlu-
sions, and drifts. In our paper, we follow STMN and exam-
ine a collection of training procedure and model architec-
ture refinements which affect the video object segmentation
performance. First, we explore the segmentation perfor-
mance of the pre-training stage with different pre-training
datasets. Second, we do some ablation study to decide
which backbone (including ResNet-50, Refine-50) should
be selected for the encoder. Finally, we validate some test-
ing augmentation tricks, including flip-testing, multi-scale
testing and model ensemble, to improve the segmentation
performance.

2. Method
The chart of Space-Time Memory Networks is shown in

Figure 1. During the video processing, the previous frames
with object masks are considered as the memory frames
and the current frame without the object mask as the query
frame. The encoder extracts the appearance information
with the memory frames and query frame. The Space-time
Memory Read Module will compute the spatio-temporal at-
tention between the query frame and memory frames. Then,
the decoder will output the final segmentation result for the



query frame.
Pre-training The STMN is first pre-trained on a simu-

lation dataset generated from static image data, then fine-
tuned for real-world videos through the main training. Sim-
ilar to STMN, we used image datasets with instance ob-
ject masks (Pascal VOC [3, 4], COCO[8], MSRA10K[14],
ECSSD [2], and Youtube-VOS) to simulate training sam-
ples. We find that add the Youtube-VOS into the simulation
datasets can significantly improve the segmentation perfor-
mance.

Backbone: The STMN use the ResNet-50 as the back-
bone of the encoder and decoder. In our work, we propose
a new backbone, named Refine-50, which can well handle
the scale variant cases.

Testing Tricks: In order to improve the segmentation
performance, we use the flip-testing and multi-scale testing
for a single model. For ensemble experiments, we average
the object probability from ResNet-50 and Refine-50.

3. Experiments

In this section, we first briefly introduce the Youtube-
VOS [19] dataset and corresponding evaluation metrics,
then we evaluate a series of refinements through ablation
studies. Finally, we report the final results in the Youtube-
VOS Challenge.

3.1. Datasets and Evaluation Metrics

Youtube-VOS [19] is the latest large-scale dataset for
video object segmentation. The training set consists of
3471 videos, and we further split the training set into 3321
offline-training set and 150 offline-validation set. We adopt
the offline-validation set to select the model from different
epochs. For evaluation, we measure the region similarity J
and contour accuracy F . The results of validation set and
test set are evaluated through the online CodaLab server.

3.2. Training Details

Our model is implemented in Pytorch [11]. For the train-
ing, we 4V 100 GPUs on a server are used. Adam [7] op-
timizer is adopted. The learning rate is set to 1e − 5. The
input size for the network is made to a fixed 384×384. The
cross-entropy loss is used. The batch size on each GPU is
set to 4.

3.3. Testing Details

Follow [10], we simply save a memory frame every 5
frames. And the input size of the network for inference is
set to an integer multiple of 16. Moreover, we adopt the
multi-scale testing to boost the performance.

Table 1. The results of Pre-training, Main-training and Full-
training with ResNet-50 on YouTube-VOS validation set.

Training Method Overall

Pre-training only (w Youtube-VOS) 0.617
Pre-training only (w/o Youtube-VOS) 0.667

Main-training only 0.681
Full-training 0.766

Table 2. The results of different backbones with pre-training only
on YouTube-VOS validation set.

Backbone Overall

ResNet-50 0.667
Refine-50 0.708

Table 3. The results of flip and multi-scale testing with ResNet-50
and full-training on YouTube-VOS validation set.

Flip Multi-Scale Overall
0.761√
0.766√ √
0.777

3.4. Refinements during Training and Testing
Phases

In this section, we evaluate the effectiveness of a series
of refinements during the training and testing phases.

3.4.1 Pre-training on images

We evaluate the performance of different training methods
in this experiment. As shown in Table 1, pre-training only
achieved perfermance close to main-training only, without
adopting any real videos for training. Without the pre-
training phase, the performance drops from 0.766 to 0.681.
Therefore, diverse appearance of different objects during
the pre-training stage significantly boost the generalization
of our model.

3.4.2 Different Backbones

We evaluate the effectiveness of different backbones in
this experiment. As shown in Table 2, by adopting our
stronger refine-50 backbone, the results improve from 0.667
to 0.708.

3.4.3 Multi-Scale Testing

We evaluate the effectiveness of flip and multi-scale testing
in this experiment. We adopt the multi-scale with 0.75, 1.0.
As shown in Table 3, when adopting the flip testing, the per-
formance improve from 0.761 to 0.766. With multi-scale
testing involved, we further boost the performance, from
0.766 to 0.777.



Table 4. Ranking results on the YouTube-VOS test set.
Team Name Overall J seen J unseen F seen F unseen

zszhou 0.818 0.807 0.773 0.847 0.847
theodoruszq 0.817 0.800 0.779 0.833 0.855
zxyang1996 0.804 0.794 0.759 0.833 0.831

swoh 0.802 0.788 0.759 0.825 0.835
Jono 0.714 0.703 0.680 0.736 0.740

andr345 0.710 0.699 0.667 0.732 0.740
Ours (youtube test) 0.791 0.779 0.747 0.815 0.822

Figure 2. Qualitative results of our model on the YouTube-VOS test set.



3.5. Results on Youtube-VOS Challenge

Finally, we ensemble the model with ResNet-50 and
Refine-50, and achieved 0.791 on the Youtube-VOS test set.
The qualitative results of the final model are shown in Fig-
ure 2.

4. Discussions
During our experiments, we find two main problems.

Firstly, the results on validation set of the model with dif-
ferent epochs vary seriously. Secondly, the results on vali-
dation set and test set for the model with same epoch show
a large difference.

5. Conclusion
In this work, we conduct a series of refinements with

the Space-Time Memory Networks and empirically evalu-
ate their impact on the final model performance through ab-
lation study. Finally, we achieve a Overeall of 79.1 on the
Youtube-VOS Challenge 2019.
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