PMSNet: Propagated Masks Selection Network for Video Object Segmentation

Huaijia Lin^{1*}, Ruizheng Wu^{1,2*}, Xiaogang Xu¹, Xiaojuan Qi¹, Jiaya Jia^{1,2} ¹The Chinese University of Hong Kong ²Tencent YouTu Lab *indicates equal contribution

Problem Definition

• Separating an object from the background in a video, given the mask of the first frame.

Challenges

• Missing Objects Reappear

• Substantial Appearance Variations

• Multiple Similar Objects Occluding

Framework – Inference Pipeline

Framework – Inference Pipeline

• Motion Feature extract

- Adopt FlowNet2C_[1] structure.
- Load Flownet2C pre-trained weight.
- The magnitude of optical flow $||F_{x\to x-1}||_2^2$ will be the motion features for subsequent network.
- Learn motion features end-to-end.

[1] Dosovitskiy, Alexey, et al. "FlowNet: Learning Optical Flow with Convolutional Networks." *Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV)*. IEEE Computer Society, 2015.

- Motion branches
 - Input:
 - Last frame label L_{x-1} .
 - Motion features from current frame to last frame $F_{x \to x-1}$.
 - Deep Motion Branch
 - Adopt OSVOS^[1] network structure.
 - Load with VGG16 pre-trained weight.
 - Shallow Motion Branch
 - Several Convolution-Relu blocks.
 - No down-sample operation.
 - It improves **10.56** in validation set overall score.

- Appearance Branch
 - Input:
 - Current frame RGB image I_{χ}
 - Last frame label L_{x-1}
 - Network setting
 - Adopt OSVOS network structure.
 - Load with VGG16 pre-trained weight.

• Fusion & Loss function

- We fuse three branch prediction.
- IoU loss is set as our loss function.

$$Loss = \frac{\sum_{i} (GT_i * P_i)}{\sum_{i} (GT_i + P_i - GT_i * P_i)}$$

• The propagated mask is utilized for subsequent selection.

- Inference strategy
 - Multi-frame ensemble

$$I_{t-5} \qquad I_{t-4} \qquad I_{t-3} \qquad I_{t-2} \qquad I_{t-1} \qquad I_t$$

- We ensemble the prediction from previous 5 frames.
- Only the results of I_{t-5} and I_t will be saved for validation, all frame results will be saved for testing.
- It improves **2.52** in validation set overall score.

Framework – Inference Pipeline

We directly use the pre-trained model^[1] of coco dataset.

[1] He, Kaiming, et al. "Mask R-CNN." 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.

Framework – Inference Pipeline

Framework – Reid Selection

 L_0 denotes the given mask.

 L_0 denotes the given mask.

Reid Selection – Motion Consistency

Motion Consistency

Motion Consistency With L_{x-1}

$$S_{MC}(Mask, L_{x-1}) = \frac{1}{2}(IoU(F_{x \to x-1}(Mask), L_{x-1}) + IoU(F_{x-1 \to x}(L_{x-1})), Mask))$$

- $F_{x \to x-1}$ and $F_{x-1 \to x}$ is the warp operation with the optical flow
- For saving computation, the masks with $S_{MC}(Mask, L_{x-1})$ smaller than a threshold (=0.2 in the experiment) are abandoned.

Framework – Reid Selection

 L_0 denotes the given mask.

Reid Selection – Appearance Consistency

Appearance Consistency

- Realize it by Pixel Embedding Network, inspired by [1]
- For saving computation, the size of $E_{\chi}^{FG}/E_{\chi}^{BG}$ is not more than a fixed number (=512 in the experiment).
- For sampling evenly, down-sample the FG/BG mask to the corresponding area.

Appearance Consistency						
With L_{x-1}/L_0						

Reid Selection – Appearance Consistency

- Appearance Consistency
 - Use the Embedding Vectors to calculate the number of valid vectors with function $\varphi(\cdot, (\cdot, \cdot))$ $\varphi(V, (F, B)) = \sum_{f^V \in V} I(min_{f^F \in F} ||f^V - f^F|| - min_{f^B \in B} ||f^V - f^B|| < 0)$

Reid Selection – Appearance Consistency

• Appearance Consistency

۲

• Use the Embedding Vectors to calculate the number of valid vectors with function $\varphi(\cdot, (\cdot, \cdot))$

$$\varphi(v, (F, B)) = \sum_{f^{V} \in V} I(mn_{f^{F} \in F} || f^{V} - f^{F} || - mn_{f^{B} \in B} || f^{V} - f^{F} || < 0)$$

Jse the valid number to calculate the appearance consistency with $L_{\chi-1}/L_0$

$$S_{AC}(Mask, L_{x-1}) = \frac{\varphi\left(E_x^{FG}, \left(E_{x-1}^{FG}, E_{x-1}^{BG}\right)\right) + \varphi\left(E_{x-1}^{FG}, \left(E_x^{FG}, E_x^{BG}\right)\right)}{|E_x^{FG}| + |E_{x-1}^{FG}|}$$

Framework – Reid Selection

 L_0 denotes the given mask.

Framework – Reid Selection

 L_0 denotes the given mask.

Framework – Inference Pipeline

Results

• Summary of performance with different components

Results

- Our final results (rank 3rd)
- Validation set:

#	User	Entries	Date of Last Entry	Overall 🔺	J_seen ▲	J_unseen 🔺	F_seen 🔺	F_unseen 🔺
1	speeding_zZ	62	08/28/18	0.710 (1)	0.725 (2)	0.644 (1)	0.761 (2)	0.711 (1)
2	Jono	8	08/27/18	0.703 (2)	0.744 (1)	0.606 (4)	0.789 (1)	0.675 (3)
3	linhj	26	08/29/18	0.697 (3)	0.723 (3)	0.631 (2)	0.736 (4)	0.698 (2)

• Test set:

#	User	Entries	Date of Last Entry	Overall 🔺	J_seen ▲	J_unseen ▲	F_seen 🔺	F_unseen 🔺
1	Jono	4	09/01/18	0.722 (1)	0.737 (1)	0.648 (2)	0.778 (1)	0.725 (2)
2	speeding_zZ	8	09/01/18	0.720 (2)	0.725 (3)	0.663 (1)	0.752 (3)	0.741 (1)
3	mikirui	8	09/01/18	0.699 (3)	0.736 (2)	0.621 (4)	0.755 (2)	0.684 (4)

Visual Results

Visual Results

Future Direction

- Small object
- Learned parameters instead of fixed threshold
- Key multiple previous frames
- Long term understanding for retrieving missing object
- Speedup
- ...

Thanks & Questions