PMSNet: Propagated Masks Selection Network for Video Object Segmentation

Huaijia Lin1*, Ruizheng Wu1,2*, Xiaogang Xu1, Xiaojuan Qi1, Jiaya Jia1,2

1The Chinese University of Hong Kong \hspace{1cm} 2Tencent YouTu Lab

*indicates equal contribution
Problem Definition

• Separating an object from the background in a video, given the mask of the first frame.
Challenges

• Missing Objects Reappear

• Substantial Appearance Variations

• Multiple Similar Objects Occluding
Framework – Inference Pipeline

\[L_{x-1} \]

\[I_{x-1} \] → Propagation Module → Propagated Mask

\[I_x \] → Mask RCNN → Proposed Masks

Reid Selection → \(L_x \)
Framework – Inference Pipeline

\[L_{x-1} \]

\[I_{x-1} \]

Propagation Module

Propagated Mask

Reid Selection

\[L_x \]

\[I_x \]

Mask RCNN

Proposed Masks
Framework – Propagation Module

- Overview of Propagation Module

\[\text{Loss} = \frac{\sum_i (GT_i \ast P_i)}{\sum_i (GT_i + P_i - GT_i \ast P_i)} \]
Framework – Propagation Module

- Overview of Propagation Module

\[
Loss = \frac{\sum_i (GT_i * P_i)}{\sum_i (GT_i + P_i - GT_i * P_i)}
\]
Framework – Propagation Module

- **Motion Feature extract**
 - Adopt FlowNet2C[1] structure.
 - Load Flownet2C pre-trained weight.
 - The magnitude of optical flow $\|F_{x\rightarrow x-1}\|^2_2$ will be the motion features for subsequent network.
 - Learn motion features end-to-end.

Framework – Propagation Module

• Overview of Propagation Module

\[
Loss = \frac{\sum_i (GT_i * P_i)}{\sum_i (GT_i + P_i - GT_i * P_i)}
\]

\[
\begin{align*}
I_x & \quad \text{Appearance Branch} \\
L_{x-1} & \quad \text{Deep motion Branch} \\
F_{x\rightarrow x-1} & \quad \text{Shallow motion Branch} \\
\end{align*}
\]
Framework – Propagation Module

- Overview of Propagation Module

\[\text{Loss} = \frac{\sum_i (GT_i \ast P_i)}{\sum_i (GT_i + P_i - GT_i \ast P_i)} \]
Framework – Propagation Module

- **Motion branches**
 - **Input:**
 - Last frame label L_{x-1}.
 - Motion features from current frame to last frame $F_{x \rightarrow x-1}$.
 - **Deep Motion Branch**
 - Adopt OSVOS\(^1\) network structure.
 - Load with VGG16 pre-trained weight.
 - **Shallow Motion Branch**
 - Several Convolution-Relu blocks.
 - No down-sample operation.
 - It improves **10.56** in validation set overall score.

One-Shot Video Object Segmentation, Computer Vision and Pattern Recognition (CVPR), 2017.
Framework – Propagation Module

- Overview of Propagation Module

\[
Loss = \frac{\sum_i (GT_i \cdot P_i)}{\sum_i (GT_i + P_i - GT_i \cdot P_i)}
\]
Framework – Propagation Module

• Overview of Propagation Module

\[\text{Loss} = \frac{\sum_i (GT_i \times P_i)}{\sum_i (GT_i + P_i - GT_i \times P_i)} \]
Framework – Propagation Module

• **Appearance Branch**
 • **Input:**
 • Current frame RGB image I_x
 • Last frame label L_{x-1}
 • **Network setting**
 • Adopt OSVOS network structure.
 • Load with VGG16 pre-trained weight.
Framework – Propagation Module

• Overview of Propagation Module

\[\text{Loss} = \frac{\sum_i (GT_i \cdot P_i)}{\sum_i (GT_i + P_i - GT_i \cdot P_i)} \]
Framework – Propagation Module

- Overview of Propagation Module

\[
Loss = \frac{\sum_i (GT_i \times P_i)}{\sum_i (GT_i + P_i - GT_i \times P_i)}
\]
Framework – Propagation Module

- **Fusion & Loss function**
 - We fuse three branch prediction.
 - IoU loss is set as our loss function.

\[
Loss = \frac{\sum_i (GT_i \times P_i)}{\sum_i (GT_i + P_i - GT_i \times P_i)}
\]

- The propagated mask is utilized for subsequent selection.
Framework – Propagation Module

• Inference strategy
 • Multi-frame ensemble

• We ensemble the prediction from previous 5 frames.
• Only the results of I_{t-5} and I_t will be saved for validation, all frame results will be saved for testing.
• It improves 2.52 in validation set overall score.
We directly use the pre-trained model\cite{1} of coco dataset.

Framework – Inference Pipeline

\[L_{x-1} \]

\[I_{x-1} \]

\[I_x \]

Propagation Module

Propagated Mask

Reid Selection

Proposed Masks

\[L_x \]
Framework – Reid Selection

Proposed Masks

Motion Consistency With \(L_{x-1} \)

Appearance Consistency With \(L_{x-1} \)

Best Proposed Masks

Best Proposed Masks

Propagated Mask

Appearance Consistency With \(L_0 \)

\(L_x \)

\(L_0 \) denotes the given mask.
Framework – Reid Selection

Proposed Masks

Motion Consistency With L_{x-1}

Appearance Consistency With L_{x-1}

Best Proposed Masks

Best Proposed Masks

Appearance Consistency With L_0

L_x

L_0 denotes the given mask.
Reid Selection – Motion Consistency

• **Motion Consistency**

\[
S_{MC}(\text{Mask}, L_{x-1}) = \frac{1}{2} (\text{IoU}(F_{x \rightarrow x-1}(\text{Mask}), L_{x-1}) + \text{IoU}(F_{x-1 \rightarrow x}(L_{x-1})), \text{Mask}))
\]

- \(F_{x \rightarrow x-1}\) and \(F_{x-1 \rightarrow x}\) is the warp operation with the optical flow
- For saving computation, the masks with \(S_{MC}(\text{Mask}, L_{x-1})\) smaller than a threshold (=0.2 in the experiment) are abandoned.
Framework – Reid Selection

Proposed Masks

Motion Consistency With L_{x-1}

Appearance Consistency With L_{x-1}

Appearance Consistency With L_0

Best Proposed Masks

L_x

L_0 denotes the given mask.
Reid Selection – Appearance Consistency

- **Appearance Consistency**
 - Realize it by Pixel Embedding Network, inspired by [1]
 - For saving computation, the size of E^F_x/E^B_x is not more than a fixed number (=512 in the experiment).
 - For sampling evenly, down-sample the FG/BG mask to the corresponding area.

Reid Selection – Appearance Consistency

- **Appearance Consistency**
 - Use the Embedding Vectors to calculate the number of valid vectors with function $\varphi(\cdot, (\cdot, \cdot))$

$$
\varphi(V, (F, B)) = \sum_{v \in V} I(min_{f \in F} ||f^V - f^F|| - min_{f \in B} ||f^V - f^B|| < 0)
$$
Reid Selection – Appearance Consistency

- **Appearance Consistency**
 - Use the Embedding Vectors to calculate the number of valid vectors with function $\varphi(\cdot, (\cdot, \cdot))$
 \[
 \varphi(V, (F, B)) = \Sigma_{f' \in V} I(\text{min}_{f' \in F} |f' - f| - \text{min}_{f' \in B} |f' - f| < 0)
 \]
 - Use the valid number to calculate the appearance consistency with L_{x-1}/L_0
 \[
 S_{AC}(\text{Mask}, L_{x-1}) = \frac{\varphi\left(E^{FG}_x, (E^{FG}_{x-1}, E^{BG}_{x-1})\right) + \varphi\left(E^{FG}_{x-1}, (E^{FG}_x, E^{BG}_x)\right)}{|E^{FG}_x| + |E^{FG}_{x-1}|}
 \]

Diagram:
- L_x
- I_x
- Embedding Network
- Embedding Vectors
- Foreground Embedding Vectors E^{FG}_x
- Background Embedding Vectors E^{BG}_x
- Pixel Embedding Network
Framework – Reid Selection

Proposed Masks

Motion Consistency With L_{x-1}

Appearance Consistency With L_{x-1}

Appearance Consistency With L_0

Best Proposed Masks

– Why not check the motion consistency of propagated Mask?
– Because propagated mask has high motion consistency already

L_0 denotes the given mask.
Framework – Reid Selection

Proposed Masks

Motion Consistency With L_{x-1}

Appearance Consistency With L_{x-1}

Best Proposed Masks

If $S_{AC}(Mask, L_0)$ is smaller than a threshold (=0.1 in the experiment), then the object is considered to be missing.

Appearance Consistency With L_0

L_x

L_0 denotes the given mask.
If the object is missing, we enumerate I_k/L_k from $k = 0$ to $k = x - 1$ to obtain the propagated mask. This is based on the observation that objects usually reappear at close positions in the image.
Results

• Summary of performance with different components
Results

• Our final results (rank 3rd)

• Validation set:

<table>
<thead>
<tr>
<th>#</th>
<th>User</th>
<th>Entries</th>
<th>Date of Last Entry</th>
<th>Overall ▲</th>
<th>J_seen ▲</th>
<th>J_unseen ▲</th>
<th>F_seen ▲</th>
<th>F_unseen ▲</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>speeding_zZ</td>
<td>62</td>
<td>08/28/18</td>
<td>0.710 (1)</td>
<td>0.725 (2)</td>
<td>0.644 (1)</td>
<td>0.761 (2)</td>
<td>0.711 (1)</td>
</tr>
<tr>
<td>2</td>
<td>Jono</td>
<td>8</td>
<td>08/27/18</td>
<td>0.703 (2)</td>
<td>0.744 (1)</td>
<td>0.606 (4)</td>
<td>0.789 (1)</td>
<td>0.675 (3)</td>
</tr>
<tr>
<td>3</td>
<td>linhj</td>
<td>26</td>
<td>08/29/18</td>
<td>0.697 (3)</td>
<td>0.723 (3)</td>
<td>0.631 (2)</td>
<td>0.736 (4)</td>
<td>0.698 (2)</td>
</tr>
</tbody>
</table>

• Test set:

<table>
<thead>
<tr>
<th>#</th>
<th>User</th>
<th>Entries</th>
<th>Date of Last Entry</th>
<th>Overall ▲</th>
<th>J_seen ▲</th>
<th>J_unseen ▲</th>
<th>F_seen ▲</th>
<th>F_unseen ▲</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jono</td>
<td>4</td>
<td>09/01/18</td>
<td>0.722 (1)</td>
<td>0.737 (1)</td>
<td>0.648 (2)</td>
<td>0.778 (1)</td>
<td>0.725 (2)</td>
</tr>
<tr>
<td>2</td>
<td>speeding_zZ</td>
<td>8</td>
<td>09/01/18</td>
<td>0.720 (2)</td>
<td>0.725 (3)</td>
<td>0.663 (1)</td>
<td>0.752 (3)</td>
<td>0.741 (1)</td>
</tr>
<tr>
<td>3</td>
<td>mikirui</td>
<td>8</td>
<td>09/01/18</td>
<td>0.699 (3)</td>
<td>0.736 (2)</td>
<td>0.621 (4)</td>
<td>0.755 (2)</td>
<td>0.684 (4)</td>
</tr>
</tbody>
</table>
Visual Results

I_x

L_x
Future Direction

• Small object
• Learned parameters instead of fixed threshold
• Key multiple previous frames
• Long term understanding for retrieving missing object
• Speedup
• ...

Thanks & Questions